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Preface

Several years ago while at the Phillips Laboratory, I was introduced to a nu-

merical technique known as Smoothed Particle Hyrodynamics (SPH). I was intrigued

by its simplicity and yet apparent accuracy. Unfortunately, my duties at the time

kept me from thoroughly exploring the algorithm. So when it was suggested to me

that SPH might make an interesting topic for research, I quickly agreed. Thus, the

topic of analyzing SPH from a mat!, .atical point of view became the basic theme

for my dissertation.

I wish to thank committee member D, Kirk Mathews for his tough questions

and pointed advice. His input greatly implo.,ed the quality of this dissertation.

Thanks also to committee member Mike Stoecker fnr our many discussions and his

numerous edits. Without his help I would have gotten lost at times. To Dr Firooz

Allahdadi, I appreciate the advice and friendship given to me both before .and during

this work. He convinced me that I was capable of succeeding. I am indebted to my

faculty advisor, Dr Dennis Quinn. His calm, non-intrusive ways eased the trouble

spots, kept me focused, helped me to find the answers, and allowed me to grow on my

own. Quite simply, through my work with him, I learned how to perform research

and write in a professional manner.

Finally, I wish to thank my wife, Donna, and son, Ben, for their understanding

and support during those periods when I could not be with them due to this project.

I dedicate this work to my father, who died shortly before this work started; his

analytical mind and strong will helped form and prepare me for this work.

David Allen Fulk
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AFIT/DS/ENC/94-1

Abstract

This dissertation studies the numerical technique known as Smoothed Particle

Hydrodynamics (SPH) from a mathematical point of view. As a framework for the

research, problems from the Hypervelocity Impact (HVI) community were chosen.

The gridless Lagrangian method, SPH, can handle the complicated geomet igh

deformation rates, and material tracking features of HVI problems quite v, the

research starts with a detailed consistency analysis of the method. Higher dimensions

and non-smooth functions are considered in addition to the more standard smooth

one-dimensional case. A stability analysis is then performed. Using a linearizing

technique, an instability is found. Four solutions are proposed to resolve the insta-

bility. Also an initial Total Variation Stability analysis is performed on a simplified

form of SPH. The concepts of consistency and stability are then brought together in

a convergence proof. This proof uses three lemmas derived from the Lax-Wendroff

Theorem in finite differences. The detailed study of the method itself is concluded

with an analysis of the SPH Kernel function, the key element in SPH. Techniques to

compare and evaluate different kernels are proposed. Bell-shaped kernels are shown

to be superior over other shaped kernels and many new kernels are introduced. To

provide a full discretization of the problem, three different time schemes are then

applied to SPH. The Lax-Wendroff and Shu methods are used for the first time with

SPH, while problems with implementations of the central time scheme are noted.

In addition, an SPH Lax-Friedrichs type form is developed. This method is used in

proposing the use of and developing flux-limited hybrid methods in SPH to control

shocks. This idea allows the SPH continuity equation to be used for the first time

when solving the classic Riemann shock tube problem.

xvi



A NUMERICAL ANALYSIS OF SMOOTHED PARTICLE

HYDRODYNAMICS

I. INTRODUCTION

This dissertation addresses a numerical technique known as Smoothed Particle

Hydrodynamics (SPH) for solving a class of partial differential equations. In order

to limit the scope of the work, SPH will be studied as it applies to problems of

deformative failure modes of material under high strain rate loading due primarily

to hypervelocity impact (HVI). Although the exact nature of the problem is not

required to perform most of the analysis detailed in this dissertation, it forms a

framework in which the method may be understood, a set of equations to evaluate,

and a user community interested in the applications.

Numerous techniques are available to solve partial differential equations and in

particular the Euler equations. Finite difference and finite element techniques are two

of the more popular general categories of methods because they are well-grounded in

numerical theory and usage. Each has its own advantages and disadvantages when

applied to problems of the type found in HVI, but SPH by its design has some other

advantages over these other techniques. Since SPH is a rather new technique, it has

not received as much theoretical attention as the older methods.

1. 1 Advantages of SPH

HVI and related problems are characterized by extremely high deformation

rates. When using a finite element method, these deformations will often cause the

elements to become so elongated that time stepping goes to zero and can even cause

elements to get turned inside out. Standard Eulerian finite difference techniques can

handle the deformation rates much better, but do not have the material tracking

1-1



and interface accuracy desired for complicated geometries. However, the gridless

Lagrangian method, SPH, can handle these sorts of problems quite easily.

1.2 .4nalysis of SPH

The results of this dissertation are split between two major categories: numer-

ical properties of SPH and the implementation of SPH. The numerical properties

are more fundamental and mathematical in nature, while, as the name suggests, the

implementation work is more applied. These two categories overlap and rely on each

other providing a continuity to the study of SPH in this work. Each of these areas

is discussed below.

The numerical properties of any technique form the mathematical foundation

upon which the method is built. Without these, a technique is simply an empirical

method, approximating a differential equation under certain test conditions. For

most techniques numerically solving differential equations, the properties of interest

are consistency, stability, and convergence. Also in this category is any other prop-

erty which is fundamental to the method itself. In SPH, the kernel function has

fundamental influence on the properties above as well as accuracy. Therefore, in this

dissertation, a chapter is devoted to each of these four topics.

The implementation of a technique is a mixture of engineering, physics, com-

puter science, and mathematics to convert the fundamental properties into a usable

tool. Therefore, discussing this category would vary from technique to technique and

problem to problem as to what to include. For the SPH method, the kernel function

is a good starting point. Although it was also listed as a numerical property, it is a

primary element in implementing the technique and is easily changed from problem

to problem. Two items that also fit in the category of implementation issues (and

also closely relate to the HVI problem) are the areas of time stepping and shock

handling. These two items each have a chapter devoted to them.

1-2



1.3 Contributions

Chapter II (Background) discusses relevant background material on the equa-

tions of interest, other numerical techniques, and SPH itself. This is essentially a

review of material from the literature. This chapter is quite useful, in that it is one

of the few instances that all of this background material appears in one place with

details.

Chapter III (Consistency) discusses the mathematical concept of consistency

with regards to SPH. The general idea of consistency is related to how well the nu-

merical equations model the physical equations. The analysis of the consistency of

SPH is formalized in this chapter. As usual, consistency is studied under the assump-

tions of sufficiently smooth data. Although this seems restrictive, since information

on a numerical function is generally unavailable on a sub-grid basis, the numerical

function can usually be assumed to be smooth without loss of generality. In addition,

for those few times when a smooth function assumption is not acceptable, a second

approach to analyzing consistency is taken. In this, a version of SPH is developed

that is consistent even if the function has a discontinuity in it. Most of the work

in this chapter is performed in one space dimension, but is later shown to apply in

higher dimensions as well. A key assumption in the consistency analysis performed

here is that volume elements based on the particle spacing are equivalent (in a sense

defined later) to volume elements based on the mass and density of particles.

Chapter IV (Stability) discusses the mathematical concept of stability with

regards to SPH. The basic concept of stability is the analysis of error propagation.

As is common, this is first accomplished by performing a linear stability analysis. In

this, SPH is applied to the Euler equations, with the field variables represented by

perturbations around equilibrium points. This sort of analysis yields an amplification

matrix that can be analyzed to determine the stability of the system. An instability is

found in the system and four corrections are proposed. Next, an alternative method
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for studying stability based on the total variation of the function is introduced. This

is a more powerful technique, but more difficult to obtain results.

Chapter V (Convergence) relates the consistency and stability of the method

to the mathematical concept of convergence in SPH. Convergence is the most im-

portant concept since it implies that the numerical solution is close to the actual

solution. Direct proofs of convergence are often difficult to perform, but theorems

relating convergence with consistency and stability are easier to prove. This is the

approach taken here. A convergence theorem, obtained from the study of finite

difference methods, is extended to SPH through the statement and proof of three

new lemmas. Although there are several assumptions made in the theorem and

lemmas that restrict its use, this is a fundamental mathematical result, providing a

cornerstone upon which SPH can build a theoretical foundation.

Chapter VI (Kernels) bridges the gap between the numerical properties and

implementation of SPH by discussing the kernel function. The kernel has primary

roles in the consistency and stability of the method (and therefore indirectly the

convergence). The kernel also directly influences the accuracy of the method. Ker-

nel functions are relatively easy to develop and implement, but they do affect the

computational cost. Hence, a choice of kernel for a particular problem will influ-

ence accuracy, stability, and practical costs; so the choice should be made wisely.

Although kernel requirements, higher order kernels, and the smoothing length are

all discussed in this chapter, the significant contribution is in the development of

measures of merit for SPH kernels. These measures of merit are developed for both

smooth and non-smooth data and then tested using eighteen kernels (many of which

are first proposed here). The results lend some insight into the kernel under given

assumptions while the measures of merit are general enough so that they can be used

under many different assumptions.

Chapter VII (Time Schemes) discusses temporal discretizations that can be

applied with the SPH spatial discretization for the complete implementation of the
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method. This chapter gathers work performed in Chapters III, IV, and VI to fully

discuss three alternative, second order time schemes. In addition two first-order time

schemes are introduced. These are used with the hybrid schemes in Chapter VIII.

Chapter VIII (Hybrid Methods) introduces a flux-limited hybrid scheme to

SPH as a way to handle shocks. This scheme is much newer than the more traditional

artificial viscosity notion in finite differences, but in some cases seems to perform

better. The scheme weight averages lower and higher order methods with the lower

order method having more weight near a shock and the higher order method more

weight away from a shock. A shock sensing algorithm is developed and incorporated

into the flux-limiter (weight function). Six hybrid schemes are proposed and tested

against a baseline case. Under basic assumptions (no-frills implementation) they

perform roughly the same as the baseline. This concept has a long way to go before

in appears in production SPH codes, but the basic foundation for the work is laid

here.

In summary, through six chapters of new work, this dissertation leads the

reader from the basic mathematical foundation through some important implemen-

tation concerns. This provides a solid theoretical basis to the relatively new SPH

method and establishes a foundation for future development of the method.
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II. BACKGROUND

The material in this chapter summarizes a combination of articles found in the

published literature, informal papers, and books. The background is split into three

sections: the equations, standard methods, and SPH. In the section on the equations

of interest, the hypervelocity impact problem and related equations are discussed.

The next section is devoted to a discussion of the finite difference and finite element

techniques including some advantages and disadvantages relevant to the equations

and problem. In the section on SPH, the smoothed particle hydrodynamics (SPH)

method is introduced.

2.1 The Equations

This section addresses the fundamental properties of the equations which are

to be solved. It starts with a review of the application, hypervelocity impact prob-

lems, which is governed by the Euler equations, conservation laws, and constitutive

models. The emphasis of this dissertation is the analysis of the SPH methodology;

however, a scenario in which the method is applied assists in fully understanding the

methodology. Also, this scenario creates a framework that ties into the sponsor's

needs and provides a set of equations to evaluate.

2. 1.1 Introduction to Hypervelocity Impact. The basic problem is to eval-

uate the effects of projectiles impacting upon space assets (satellites, space stations,

shuttles, etc. ). These projectiles can be micrometeroids, pieces of space debris, or

anti-satellite weapons. The source does not matter as long as the projectiles are

small in relation to the overall size of the satellite. In addition, many similar effects

result even when the projectile and target are of similar sizes. Since the speeds of the

orbiting space assets and projectiles can each be over 8 km/sec, most impacts occur

at very high speeds. Although the minimum speed for an impact to be considered a

hypervelocity impact is not firmly fixed, these collisions definitely fall into the HVI
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category following any definition as will be seen. Zukas characterizes HVI by "im-

pact velocities in excess of the local sound speeds (v, >> c) and usually the complete

pulverization of the projectile and target material in the impact region." (71, 72).

The second part of this characterization can imply that very soft, dense materials

are considered HVI at much lower velocities than very strong, low-density materials.

However, since Zukas states that even the strong materials collide at "hyperveloci-

ties" when speeds are in the 8-10 km/sec range, the initial impacts are considered

to all be HVI regardless of materials involved.

Although opinions on this vary, Zukas summarizes the effects at hypervelocity

rather succinctly: "shock waves propagate through the colliding bodies which, for

all practical purposes, behave as fluids. Analytically, the equations of motion and

a high pressure equation of state are the key descriptors of material behavior. Ma-

terial strength is significant only for the late stages of this energy driven problem

and may often be treated with a simple incremental elastic, perfectly plastic model

with an appropriate value of flow stress obtained from dynamic (wave propagation)

experiments. Spallation is a frequently encountered failure mechanism. Because of

the short time scale of the material response, simple time-independent failure criteria

for spall often give satisfactory results." (72:594)

Some key sources for information on HVI are: Zukas, et al. (71, 72) for impact

dynamics and the two Hypervelocity Impact Symposia (23, 24), especially Anderson

(1) and Asay and Kerley (2) for HVI effects.

2.1.2 HVI Equations. As in classical mechanics, the starting equations are

almost always the conservation equations. Conservation of mass, momentum, and

energy are all required to be satisfied. Some general information on conservation

laws is presented later. For now, the most basic forms (steady state) of these are

2-2



seen in equations (2.1):

Conservation of Mass: IV p dV = const

N

Conservation of Momentum: m, fi, = const (2.1)

Conservation of Energy: 2) mi EJ = • (in1  m, v = o

where p is the mass density, m is the mass, V is the volume, 6" is the velocity, E is the

total energy, and e is the internal energy. These basic equations are not sufficient to

capture variation in time, but are useful in verifying that a numerical method used

for spatial derivatives conserves the mass, momentum, and energy.

To capture the time variation, partial differential equations of motion are

needed. For this problem we use the Euler equations of gas dynamics. These can be

written in what is referred to as Eulerian or Lagrangian forms. Since the primary

numerical method studied in this dissertation is a Lagrangian formulation, those

forms of the equations are given (ref Anderson (1:33)) below

DpDt (2.2)

D6 - 1
= F_-(V_ a) (2.3)

Dt p
DE I

= Fi-6-V(o'-f) (2.4)
Dt p

where a is the stress tensor and F are external body forces. The D derivatives are

the Lagrangian or Stokesian derivatives and are defined as

D a 0+ + - 1.57

Although the forms of the Euler equations found in equations (2.2)-(2.4) could be

used as is, it is common in SPH to make some simplifications. The first simplification
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is to just solve for internal energy (e) instead of solving for total energy (E), where

total energy equals kinetic plus internal. Nothing is lost in this change because total

energy can be recovered from the momentum and internal energy equations. Further.

because most of the common forms of the equation of state use internal energy. this

is a useful change. To make this change, do the following

DE D( 1 2) De -Di f"- = - e+ -,v + 1, . _ =P.F a
Dt Dt 2 -Dt Dt p
De -. 1 D__v

Dt p Dt

= V-(.) + (V ) = -
p p )

The second simplification is to assume there are no external body forces (that is,

F 0). For most HVI problems, boundaries are essentially at infinity, where the field

variables are zero. So nothing is lost in this simplification. The third simplification

is to deal with strictly hydrodynamic problems. This implies the deviatoric stress

tensor is zero and the stress tensor given in the equations above can be replaced

with just the pressure, P. This last assumption makes the analysis much simpler

and is frequently done. However, for many impact problems material strength is

important and this assumption cannot be made in those cases. Material models are

briefly discussed later in this section. Using these three simplifications, the form of

the Euler equations as used throughout most of this dissertation is

Continuity Equation: Dt - p(V (.i) (2.5)
Dt

D - 1P(26
Momentum Equation: t -VP (2.6)

Dt p
De P

Energy Equation: De - ( (V.6) (2.7)

Particle Mtion Equation: Dt v. (2.8)
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Note that the particle motion equation was added, where x is the position of the

material point. To complete the system, an equation of state is added to the set of

equations. The equation of state, often written as P = P(p, e), is discussed later in

this chapter.

2.1.3 Conservation Laws. Conservation Laws are the fundamental equa-

tions to solve; therefore the basic concepts are discussed here. The derivations below

are taken primarily from LeVeque (32), Lax (30), and Quinn (50). Other good

sources include Weinacht (67) and Smoller (57).

Although conservation laws are often shown as differential equations, they are

in fact integral relationships that equate the rate of change of the integral with the

flux across the boundary (ref (32:16))

lb u(x,t)dx = f(u(a,t)) - f(u(b,t)) . (2.9)

Integrate this equation in time to obtain

bu(, t2)udx-- u(x,tl)dx + f(u(at))dt- f(u(bt))dt. (2.10)

If u and f are differentiable, then

u(X,t 2 ) - u(x,t 1 ) = t 9u(xt)dt (2.11)

f(u(b, t)) - f(u(a, t)) = j f(u(x, t)) dx . (2.12)

Substituting (2.11) and (2.12) into equation (2.10) yields

-Lu(x,t)+ f(u(x,t)) dxdt = 0. (2.13)
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Since this must hold for any region {[a, b] x [t,,t2]} it can be concluded that

a u(xt) + a-f(u(xt)) = 0. (2. i4)

This is often referred to as the general form of the conservation law. It is usually

given with t1 = 0 and an initial condition such as

u(x,O) = uo(x) x E [a,b] . (2.15)

Differential equations written as initial value problems, such as (2.14)-(2.15), are

often used as the model to solve (such as the Euler equations given earlier) and the

desired solutions are known as classical solutions. Lax has shown (in (30)) that a

solution for this initial value problem exists and is unique (under certain restrictions

discussed later).

Definition 1 (Continuous Function Spaces)

"* Cn(Q) denotes a space of n times continuously differentiable functions on Q.

"* Cn(fQ) denotes a Cn(fZ) space where all functions have compact support.

Definition 2 (Classical Solution) u(x, t) is a classical solution of the conserva-

tion law (2.14), (2.15) if the following holds

1. u E C'([a,b] X (O, t2])

2. ut(x,t) + [f(u(x,t))]. = 0 (x,t) E {[a,bJ x (0, t2J}

3. u E C([a,b] x [0, t2 ])

4. u(x,0) = u,(x) x E [a,b]

The assumptions above, that u and f be differentiable (or even continuous) over the

entire domain, do not always hold. In the equations to be solve, this most often
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occurs at a shock. At those times a classical solution of (2.14) fails to exist and

other solutions must be sought out. The most common approach is to consider the

so called weak solution. The name weak as used here indicates less continuity in the

solution.

Definition 3 Co(1Z x R+Z) denotes the space of continuously differentiable functions

f (x. t) defined on {(-oo, oo) x (0, oo)} and for each function there exists real con-

stants rl, r2 , and -r such that f(x,t) = 0 for x < rl, x > r2, or t > r.

Definition 4 (Weak Solution) u(x, t) is a weak solution of the conservation law

(2.14) if the following holds for all test functions O(x, t) E C.o()Z x IZ+)

100 [Octu + Ok•f(u) ]dxdt =O(x,O0) u(x,0) dx (2.16)

It is relatively straightforward to see that a classical solution of (2.14) will satisfy

(2.16). Simply multiply (2.14) by O(x, t), integrate over all time and space, and then

integrate by parts. Due to the compact support of 0, most of the boundary terms

vanish and equation (2.16) is obtained.

The disadvantage of weak solutions is that they are not necessarily unique.

So an additional requirement must be levied in order to obtain the desired solution.

This is often an entropy condition, which relies on using the Rankine-Hugoniot jump

relationship to ensure entropy does not decrease across the shock. One form of the

entropy condition (sometimes referred to as Condition E) is as follows. If u- and u+

are the limits of u from the left and right respectively at a given time, and if v is

between u- and u+ then

S[v,u-1 S[u+,u-] (2.17)

where S[a,b] - f(a) - f(b) (2.18)
a-b
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This condition can be explained by stating that the flux, f, must lie above the

chord [u-. u+J when u- < u+ and below the chord [u+,u-] when u+ < u-. Quinn

(50) proved that a piecewise continuously differentiable solution to the initial value

problem for the conservation law which satisfies condition E is unique. That proof is

not repeated here. Other entropy conditions are given in the literature, but they are

all essentially the same since the Rankine-Hugoniot relationship is the foundation of

all the forms.

2.1.4 Additional Equations and Models. In addition to the conservation

equations just discussed (particularly the Euler equations), the equation of state and

constitutive equations must be considered. First, the equation of state (EOS) which

"accounts for compressibility effects (changes in density) and irreversible thermody-

namic processes such as shock heating." (1:34) Put simply, the relationship among

pressure, density (or specific volume), and internal energy (or temperature) can be

obtained. This is often represented as P = P(p, e). This relationship is derived

mostly from statistical mechanics and also often involves the Hugoniot. The Hugo-

niot curve comes from the locus of points produced by shock compression and can

be considered a material property analogous to a stress-strain curve. Most EOSs are

only valid over a limited range of its parameters. So several different EOSs need to

be available for use with any numerical algorithm. Some of the more common EOSs

for HVI are identified by Zukas (72:600) or Holian and Holian (21, 22).

Holian and Holian (21, 22) state that the Tillotson EOS has traditionally been

the favorite for HVI problems; however, from personal experience the Mie - Griineisen

is also frequently used. Asay and Kerley state "the Tillotson EOS is an improvement

to the Mie-Grianeisen formula that has been useful for hypervelocity impact calcu-

lations. However, it is oversimplified and does not give a good description of many

of the phenomena .... In order to construct an EOS that is accurate over a wide

range of densities and temperatures, it is necessary to develop a theoretical model

that includes a treatment of many physical phenomena, as are illustrated in Figure 4

2-8



[Figure 2.1 here]." (2:75) This figure points out the difficulty of accurately modeling

the EOS and is an area on the physics side of the problem in which work could be

done. Holian and Holian (21, 22) compared the Tillotson, Osborne (an analytical

polynomial EOS), and the SESAME library (a tabular EOS). From their work it ap-

pears that the SESAME library EOS may currently be best for HVI type problems,

but more work should be done to verify this (especially for SPH). However, that is

a subject of future work and will not be pursued in this dissertation.

100000. I
50000. IONIZATION /

DISSOCIATION /

i 5000 • .i,,, 1> RELEASE CURVEN>10000-

5000. LQI

1v000 OI

500. IOSBARE 1

0.2 0.5 1 2 5 10.

D=I8ITY (glcc)

Figure 2.1 Equations of State Phenomena (2:77)

The last set of equations discussed here are the constitutive equations. These

are employed to calculate stress, for the most part as a function of strain, strain rate,

internal energy, and damage. As noted earlier, constitutive equations are not going

to be included in the analysis for this dissertation, but a few words are included here

for completeness. The modeler has a great number of choices as to exactly what
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to include and how to implement these effects. The exact implementation of the

material strength is performed by what is usually referred to as a strength model;

while failure mechanisms are usually referred to as fracture models and/or fragmen-

tation models. For HVI problems, simple elastic-perfectly plastic representations are

usually sufficient, especially for early-time initial impacts, as the material strength

plays only a small role in the results. However, if the problem is carried out for

longer periods of time, other strength models may be better. Also for this problem,

the seý ndary, tertiary, etc. impacts occur at lower velocities and may require the

use of more accurate strength models. Failure models are not always used, but in all

case.. should provide more accurate results, especially when calculating the debris

cloud after an impact event.

2.2 Standard Numerical Techniques

"Analytical modeling of hypervelocity events is relatively straightforward. In

numerical simulations, the accuracy achievable and the problems addressable are

limited mainly by the speed and memory of the computer. The compressible fluid

analogy serves well for many practical engineering applications." (72:595) From this

quote, it is apparent that Zukas has an optimistic view of the modeling process, but

compared to many other types of problems he may be correct. In this section, numer-

ical methods used to solve HVI problems are discussed. "Computer programs which

handle the propagation of shock waves and compute velocities, strains, stresses, etc.,

as a function of time and position are called hydrocodes. Early formulations did

not include strength effects. Thus, metals were treated as a fluid, with no viscos-

ity, and the expression, hydrodynamic computer code came into being; with time,

this was shortened to hydrocodes." (1:34) Of course, from the previous section it is

obvious that strength can be included in these codes, but the name hydrocode has

stuck. Two methods that have been in use for many years and can be considered

standard techniques are finite difference methods and finite element methods. A
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popular quote credited to Gordon Johnson that provides a general feeling of the

difference between these is "finite difference techniques are an approximate solution

to an exact problem, and finite element techniques are an exact solution of an ap-

proximate problem." (1:43) The standard techniques can also be classified based on

the type of grid they employ. These are the Eulerian grid (often associated with

finite differences) and the Lagrangian grid (often associated with finite elements).

Both of these methods have been used with varying degrees of success for several

years to study HVI problems. However, both methods have difficulties solving these

problems. This section highlights some of the advantages and disadvantages of each

method and concludes with a discussion of why a particle method might be able to

combine the advantages of each to provide better results.

In the Lagrangian grid method, the grid is fixed to the material and moves with

it. An example of this is seen in Figure 2.2. This seems to have several advantages,

especially for the HVI problem. Some of these are: the code is conceptually simpler

and should be faster because of no convective terms, time histories are easily obtain-

able, material interfaces and geometric boundaries are sharply defined, the opening

and closing of voids at interfaces can be computed, material models (constitutive

equations) are well integrated into the method, and irregular geometries are easily

treated. The disadvantages center around two areas: a sliding interface and mesh

distortion. Elaborate sliding interfaces are required to model impact (as well as

other) problems, reducing or eliminating the computational simplicity and cost ad-

vantage. In addition, these sliding interfaces have little theoretical basis to guarantee

convergence to a physical result. The very large distortions (which occur in HVI)

can have even worse effects. The time step (based on the smallest element size) can

become too small to be efficient. Quadrilateral elements can become turned inside

out (or bow-tied) causing negative volumes, which causes conservation to be lost.

Triangular elements can also have problems where one element might have very large

positive pressure and its neighbor have very large negative pressure. Finally, highly
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distorted elements can cause errors in constitutive equation evaluation. The option

to rezone is available in Lagrangian codes. However, with each rezone some material

diffusion occurs and material histories are lost. Also, as the frequency of rezones

goes up, the code starts to resemble an Eulerian code (in an overall sense). So even

though there are some very good advantages to Lagrangian codes, the disadvantages

often lead modelers to Eulerian representations.

I/VVi/VVIV //VL q

/ VV /VV./V.1

Figure 2.2 Lagrangian Example (72:602)

An overall preference for Eulerian methods is indicated by the large percentage

of papers in the proceedings of the last two Hypervelocity Impact Symposia (23, 24).

The Eulerian method has a fixed grid in which material is placed in this grid and

is allowed to flow through it. An example of this is seen in Figure 2.3 (although

the material interfaces in the partially filled cells are not as distinct as shown). The

advantages and disadvantages seem to center around the same item: the mixing of

material in each mesh cell. For problems that physically have materials that mix this
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is advantageous, albeit a numerical mixing process rather than physical. Also. large

distortions do not cause the numerical problems of the Lagrangian method. However.

material interfaces can quickly become lost in this method. Although many new

techniques to reduce this problem and handle mixed-cells are being derived, there

are still inaccuracies as well as a limit on the number of materials in a cell (often 2). In

addition, any unusual geometric shape is distorted and often has details lost using an

Eulerian grid. The last disadvantage of Eulerian methods is their requirement to grid

and model the entire problem space. In a problem that has a large amount of void,

such as a satellite impact, this void becomes part of the computational process. This

usually requires the modeler to use a larger grid spacing for computational efficiency

at the expense of resolution and accuracy.

2-1

H 1 1 1~ i 1 1 1 1 1 1 1 1 1

II I I

Figure 2.3 Eulerian Example (72:603)

From the discussion in this section, it may appear that the existing, standard

techniques have no merit. This, of course, is untrue. Many of the problems in these
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methods come from the combination of factors that make up an HVI problem. Also,

for small-scale, single-impact analyses some of the disadvantages do not cause major

difficulties and results from these techniques may be used. However, when analyzing

a large-scale situation, impact modelers looked elsewhere for numerical techniques

to more accurately model the HVI problem. This search lead them to consider par-

ticle methods. Although there are several different approaches to particle methods

(7, 20, 61, 12, 33), as discussed in the introduction, the focus in this work is on

Smoothed Particle Hydrodynamics (SPH). The general notion in SPH is to repre-

sent the material at discrete points (or particles). These points can be considered

analogous to grid points (from finite differences) or even elements (from finite ele-

ments). But, it is best to consider them as interpolation points. Provided a sufficient

number of particles are used, material interfaces should be modeled quite well like a

Lagrangian code. But since there is no grid in SPH, it should not have the problems

of distortion and tangling caused by HVI. The particles must be smoothed out to

represent a fluid continuum flow and not just a discrete molecular interaction (such

as on an atomic level). Then, if the method can be made computationally efficient

it would combine the best of both worlds. Of course, like any numerical technique

SPH has its disadvantages as well. However, it seems to have great promise and

needs further study. Hence, the remainder of this dissertation reports the results of

that additional study on the method known as smoothed particle hydrodynamics.

2.3 Smoothed Particle Hydrodynamics

As described at the end of the previous section, Smoothed Particle Hydro-

dynamics (SPH) is of interest as a possible alternative to the more standard finite

difference and finite element techniques in solving hypervelocity impact type prob-

lems. In this section, the basics of SPH and some of the enhancements are described.

2.3.1 Introduction. SPH is a gridless, pure Lagrangian method for solv-

ing the Euler equations of gas dynamics. Within particle methods, SPH fits into
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a Particle-Particle category as described by Hockney and Eastwood (20). That is,

the state of a system is determined by a collection of particle positions and veloc-

ities while forces are calculated through interparticle interactions. Particle- particle

methods should be quite efficient provided long range forces are not calculated. SPH

was originated by Lucy (35) and Gingold and Monaghan (12) in 1977. It has been

used to study several different types of problems, including: astrophysics, gas dy-

namics, plasma (MHD), relativity, and impact. A large amount of literature on SPH

was studied and assimilated into this section. Some of the better sources used here

include: Gingold and Monaghan (12, 13), Monaghan and Gingold (37), Monaghan

(36, 38, 39, 42, 44), Benz (5), Bicknell (6), Libersky (34), and the two SPH workshops

(9, 69).

2.3.2 Kernel Approximation. SPH is often derived in a two step approach.

First is the kernel approximation described here. Second is the particle approxi-

mation described in the next subsection. The name used in the SPH literature is

kernel estimate. However, it is somewhat misleading, especially in the presentation

in this dissertation. More appropriate names would be kernel approximation, kernel

average, or smoothed average. Hence, the term kernel approximation is used in this

dissertation.

The kernel approximation can be thought of in two ways. First, using ideas

from distribution theory, an approximation to a delta distribution representation of

a function can be obtained. This is only mentioned in passing in a few papers so

I will concentrate on the second, more popular notion. First, select a continuous

function with other appropriate requirements described later and label this function

as the kernel. Then multiply an equation by the kernel and integrate to obtain the

same results as the distribution idea. These ideas lead to the kernel approximation

of f shown in equation (2.19)

<f( 0 ) >= fk( 0 ) = / f(r)W(Fo-f,h)dF (2.19)

2-15



where

n W(fo , h)-dFh = 1d, (2.20)

h (the smoothing length) is a measure of the width of the kernel function W, and Q is

the spatial domain. In equation (2.19) the notation of the angle brackets (< f(r-) >)

and the subscript k (fk(fo)) are found frequently in the literature to identify the

kernel approximation (estimate) of a function, so they are used here.

In the SPH literature, the kernel approximation (estimate) is often referred to

as an order h2 or second order method. The error analysis appears to some degree

in Monaghan (36), but not to the extent that I would like to see it. Therefore, the

derivation of the error bound is omitted here and derived fully in the next chapter.

However, simply note, that if the kernel W is normalized, is an even function, and

has compact support then

fA,(r) = f(K) + Ek,(f, *) (2.21)

where Ek(f,?o) = 2 j [if V]2f(•)W(-f,'h) d9i (2.22)

for , = {o(ii) E fn

The bound on the error term is

IEk(f,r-,) ekh , (2.23)

for a small, bounded constant ek (see equation (3.5) in the next chapter).

2.3.3 Particle Approximation. If a set of N points is given, distributed

randomly (or quasi-randomly) according to number density, n(r'), a Monte Carlo

approximation (2.24) of equation (2.19) known as the particle approximation may

be obtained. See Hammersley and Handscomb (14) and Niederreiter (46) for more
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information. The approximation is

f ) f(•'.i) W(fo - Fj, h) (2.24)
Sn(Fj,)

where n(F.) is the number density. This particle approximation was shown by Mon-

aghan (36) to be similar to orthogonal function interpolation. However, they differ

in the type of kernel being used and in the error. Also interpolation often uses a

fixed set of points usually determined by the method, but in SPH the points move

and are determined by the problem itself. Regardless of how to get to the particle

approximation, it may be easily believed that as N -+ 0c, if , -" 0 VJaf', then

f,,(i) - fk(r-,). Of course, there are errors in the particle approximation, but they

are more difficult to develop than the errors in the kernel approximation. But it

would still be desirable to show the relationship

fn (Xo) = fk(Xo) + E,.(f, x.). (2.25)

Unfortunately at this time it would require a great deal of background in probability

and Monte Carlo theory, so just a few general comments are made. The older SPH

journal articles used a Monte Carlo argument, stating the error would be proportional

to N . An error such as this could easily dominate the problem or require extremely

large numbers of particles to be used. However, this was found to be not very close

to the actual errors seen in numerical experiments (too pessimistic). Monaghan (36)

hypothesized this was because disorder was initially low (and so were fluctuations)

and when the problem became more disordered large fluctuations were prevented

because they required too much energy. Basically the physics of the problem kept

the numerical errors from getting out of hand. So then, looking at the problem even

when an instability arises, the error is more likely to be based on disordered quasi-

randomly distributed numbers which has error O((lN) where d is the dimension.

See Niederreiter (46) for more information on this argument.
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"2.3.4 Procedure. For any particle i. there exists a mass. =, =m(F)

and mass density, pi = p(F) such that the number density equals the mass density

divided by the mass, n(',) = P--. So the general SPH approximation for a function- m,

can be obtained from equation (2.24) as shown in equation (2.26).

N

fn(F.) = E -- f(--) W(Fo - F, h). (2.26)
J=1 P3

In the next chapter the relationship f,(r) = f(r) + O(h 2 . hAx) is dýerived fully with

the value of f,(r-') given in equation (2.26). However, at this time, note that the

bounds given in the literature are

f(r-) = f,,() - Ek(f,r) - E,(f,r-)
N m 2 (lnN)dE -j f (F) W(F - Fj, h) + O(h , (2l.N)-j= ' .(~Wf-~h±~, N )"(2.27)

3=1 P3

In addition to the equation above, there are two other formulations that would be

useful to generalize in SPH for later use: the gradient and the divergence. These are

given below.

The Gradient. Given a general partial differential equation: A! = VB

for functions i and B, the particle approximation may be systematically derived as

follows. First, multiply by the kernel (W), integrate, and then use Gauss's Theorem.

Consider only the VB term

< VB > = j [VB(r-0)]W(F>U - F,h)dF

= V)~ 0 -~~id -j V ,VW(iF,~i,-Fh) di,

where V, is the gradient with respect to r-. W is defined to have compact support

and often B has only short range effects (so in some sense B has compact support
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as well), therefore the surface term is taken to be zero. The result is then

< VB> = - n B() VW(o-rh)dr- = iB(r VoW( o-rh)ddr

= VJf B(r)W(Fr,-r-,h)dF= V<B>,

where V, is the gradient with respect to r-. Therefore, for problems with boundaries

at infinity or when B is sufficiently far from the boundary, the surface terms are zero.

Hence this results in < VB > = V < B >. Note: for boundary value problems, the

surface terms do not necessarily vanish and can cause large difficulties and confusing

formulas. See Chapter 111, VIII, and Campbell (8) for a discussion of these types of

problems. Now consider the entire equation d7t- VB. Then

=ý < VB >
\dt/

Using equation (2.21) and the work above to obtain

d~ + Ek (di r) = V<B>.

From equation (2.25) the particle approximation of B, Bn, is used for the < B >

term with the results

d_•= VB ,- E,,(B,r) - Ek -dr

= V B( -)VW(F- ?,.h) - E.(B,r) - EA T,

j=1 Pi
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or for particle i

-t-] = (VB), = j=1 -- B(-) VW( j,h) + O(h2,(lnN)) (228)

where Vi is the gradient with respect to ij.

The Divergence. Given a general partial differential equation: .A = V.

for functions A and B, the particle approximation may be systematically derived

similarly as before. Multiply by the kernel, W, integrate, and use the divergence

theorem to obtain a surface integral. Considering only the V .3 term

< V! =fn[V,.B-1(r")] W(F.o- -,h)di?

= IV.- j{V ~rK()W(r-, -r-, h)] - jr)-V,.W(i? ý, h))I dr-

B--- -A()V., -- r-f,h) idA Af)VWF-i,,?

where V, is the gradient with respect to r- and Vo is the gradient with respect to

'o. The last step uses the compact support of the kernel as before, making the term

on the surface zero. Also, since W is assumed to be even, the gradient of the kernel

can be interchanged from V, to V0 with a negative sign cancelling the existing one.

The result is then

(V -B) = jB( -V0 W(i- r, h)di

=Vo.] B(r-) W(-Fr-,h)dr- = V. <B>

Therefore, for problems with boundaries at infinity or when B is sufficiently far from

the boundary, the surface terms are zero. Hence this results in < V • B > =

V. < F >. Now consider the equation multiplied by p, p!LA p(V.-B). Expand
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the product to obtain

dA
PdTA = p(V.B) = V.(pA) - B.Vp.

Apply the results from the gradient and the divergence above and equations (2.21)

and (2.25) to obtain

dA dA
P Vt = V ) -B. Vp. - Ek(p- ,x) - E. (pB, x) + B. -E(p,x).

dt'

Use equations (2.26) and (2.28) above to obtain( d [ N

- [(A). • rn V1w(i - ., h)] + O(h2, (-nN)d

N N
- Zm A(i)-VW(i - ,,h)- m

( Tt j=1

(lN 2d)N~

+ O(h2,-- h)](N)

So for particle i

d -1 m r(( B)-B(•)).V,W(i--?,h)
kdtj/ (V -EM i i-'• iPi j=1

+ O(h2 (NN) (2.29)

Using these procedures the mass, momentum, and energy conservation equa-

tions may be derived in SPH format. Note: it is possible to derive other equations

as well using this general procedure. In subsequent equations, the error terms are

often dropped and '•' is used for the estimates and approximations.
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Product Rule. A product rule for the SPH approximations is needed in the

work that follows. So for functions A and B

< A > < B > = [A + Ek(A,x)] [B + Ek(B,x)]

= AB + BEk(A,x) + AEk(B,x) + Ek(A,x) Ek(B,x)

= < AB > -Ek(AB, x) + BEk(A,x) + AEk(B,x)

+ Ek(A, x) Ek (B, x).

Hence, to within the order of the method, the approximation of a product equals

the product of the approximations.

2.3.5 Density. Since the distribution of the particles is based on number

density, the mass density (p) should play a significant role in this method. There

are two ways in which to calculate the density, both of which are frequently used.

The most common, especially in the older SPH literature, is to calculate the density

directly from the particle approximation given earlier in equation (2.26). If the

function, f(F) is taken to be p(r-), and therefore f(Fi) = pi, the result is shown in

equation (2.30):
N

p(r) ; p,,(r-V) = • mW(-- ,,h). (2.30)
j=1

Several of the early papers had mj = m constant for each particle. So for M = Total

Mass, = m andp(f)-m E W(r-f, h) = M ET W(f-ih). However,

the more general form (2.30) is used throughout this dissertation.

Some general notes on conservation of mass. In the following integrals, W

has compact support so the domain fl can be taken as finite. This justifies the

interchange in the order of integration.
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() j k p(r) d Iola p(F) W(F'- , h) d~di

= P(li)JIW(F -i, h) di~di p=i J~ di = M

So Pk conserves mass exactly.

(14) jp.(rJdi; =j N r -j )

j=1'
N N

M] W( F -- , h) dr = = M
j=-1 , inj=1

So p, also conserves mass exactly. Hence, using the SPH density-by-summation form

(2.30) conserves mass exactly.

The second method to calculate density is to solve the continuity or conser-

vation of mass equation (2.31) directly in addition to the momentum and energy

equations:
Dp-t -(pV.i),. (2.31)

where D is the Stokesian derivative. The continuity equation form is discussed very

little in the literature except to say that there may be some computational efficiencies

to be gained by using this form. However, from recent symposia it appears that for

HVI problems this approach is receiving more attention because of its ability to

handle material boundaries better. It does, however, take away the natural notion

of the density obtained in SPH, but that is not a major problem. One SPH form for

equation (2.31) is

Dpi N
DA . - 2mj " ViW(ri - i,h), (2.32)

j=1 Pi
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where i is the velocity and the subscripts i and j are values at Fj and ij respectively.

This is not a very popular form; but noting (let B = 1 from the gradient work

earlier)
N

0 (p•-Vl), • P - m-A Vi W(F - , ,h). (2.33)

j=1 Pi

So adding zero in the form of equation (2.33) to equation (2.32) yields

Dpi N m(
Dt - Pi 1 -- (1i - Vj) " viW(F - F'h) . (2.34)

3=1 P1

Although equation (2.34) is somewhat popular, the most popular form is obtained

by applying the identity

p(V.t) = V.(p6) - 6-Vp,

and using the general procedures given previously in equation (2.29) to obtain the

SPH formulation shown in equation (2.35):

Dpi N
= E mj (6, - Uj) . VW(fi - r, h). (2.35)Dt

where 6i and 6J are velocities at particles i and j respectively. This points out a use

of what Monaghan calls the "second golden rule of SPH which is to rewrite formulae

with the density placed inside operators." (44:545)

2.3.6 Momentum Equation. The general form of the momentum equation

is: O_.6: - - IVP - V4 + F+ i . Where P is the pressure, I is an external forceDt p

and Fi,, is a viscosity term. However. only the simplified (inviscid) momentum

equation is considered in this paper: D_.- = _ VP. So then using the product rule
Dt P

< -5 > -< 1 > V < P >, and using P,, for < P >, SPH equations may be

obtained. However, this form can lead to conservation quandaries (both energy and

momentum) because conservation can only be guaranteed to within the order of the
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scheme. Hence, some momentum could be lost (or gained) at each time step. So

consider a few different identities

(i)

2+ -Vp. (2.36)

Then derive the following using the gradient work earlier, where the i and j subscripts

imply evaluation at the points f and F

V( z V () (mj VW(- r, h)
n j=1 Pil

N

V(P) E mZ VW(F- fj,h).
3=1

Hence for particle i

DV) V -P V~
SP 2 ViW(r-? -r-, h) - p.Nj(F - h

j=1 Pi P• j=1

(P3  P, Xr- h (2.37)
j=1 P s7  P

With W even and m constant in time, this conserves momentum exactly since

D N - N D-i N N Ip po~ m,• = m-bS- =i -• M, + ViW(-,- j, h) = 0O.
O' i=1 i=l i=1 Pi P

(ii)

VP _2v'-p

- V(V2) (2.38)
P P

(Dii _ 2(,-fPDV) 2 VP-',

Dt A
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N ppS 2m r VjW(F,-Fj,h) (2.39)
j=P P'Pj

Derivations using the identity (2.38) can be found in some of the references. Mo-

mentum is also conserved exactly with this, but it does not work if P is negative.

Version (i) is much more common in the literature. There are additional forms, some

of which are addressed later. Finally, an artificial viscosity term is frequently added

to any of these forms and is discussed more later in this section.

2.3.7 Energy Equation. The general form of the internal energy equation

(without sources or sinks) is. D - - 6V-t7. There are several ways to develop
Dt p

the SPH equations for this, but the identity used in the momentum equation and

the artificial viscosity must be compatible with whatever method is used, or else

conservation could be lost. One possibility is to use the total energy equation

N 1

Y• (in ei + - mi iv-) = constant.

Then taking the derivative to find

D [ N 1  1 2) N De, - o)-(Mi ei + -• m Vi = + Z(m,---+ nvi,- ) 0

N Mi De,) N / g
So, m, = m'i - ti=1 \D ~

The SPH form for De/Di is then obtained by using the SPH momentum equation

for D6/Dt. A more common technique is to use identities similar to what was done

for the momentum equation, such as

(De)i A(.)S, = -P-

R -V. (p v-) .VpJi (2.40)
P 2
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p. N

M)• • rJ(6i - 11) ViW(Fi - j' h) "(2.41)
P1 =1

The version of the SPH energy equation found in equation (2.41) is one of the more

common found in the literature; however several others are found. For example, by

taking
De(

=- V.(P' + -()
equation (2.42) may be obtained:

( e _ 3 (6i - -) V iW (ri- rh) . (2.42)
"Dt i 3=1 p3

Another popular form is found by taking the average of equations (2.41) and (2.42)

to obtain the symmetric form found in equation (2.43):

De) 1 N m ) (fi-- .VW( - j ,h). (2.43)

2.3.8 Conservation. An interesting difficulty with the SPH formulations

given previously is that frequently a form is derived that represents the given equa-

tion, but conservation is lost. Monaghan points this out even more by: "it has been

found that if the thermal energy equation is integrated using any of the SPH forms

given above, and if the density is calculated using equation 3.8 [equation (2.30) here],

the total entropy is not conserved as accurately as the energy. If an entropy equa-

tion is integrated then the total energy is not conserved as accurately as the entropy.

However, if the gas is ideal, the total entropy is conserved exactly if the density is

calculated using equation 3.9 [equation (2.35) here] and the thermal energy is cal-

culated using any of the forms given above. In this case the mass is not conserved

exactly. It seems one cannot have everything!" (44:549)
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2.3.9 Particle Placement. Very little information appears in the literature

regarding initial particle placement. For the most part, the impression is that parti-

cles are just poured into the object being modeled until its full and then the problem

is actually solved. This, of course, is far from the truth. For rectangular objects in

Cartesian coordinates, placing particles on a regular rectangular mesh seems to be

reasonable and is a common practice. When problems involve objects with more ir-

regular shapes or other geometries are being studied, other placement schemes may

be in order.

Monaghan (41) experimented with placing particles on a rectangular mesh

where the rows in an impactor lined up with a target and compared that to when

the rows Were offset by half a row with each other. His results indicated that with

just an artificial viscosity term some non-physical penetration (known as streaming)

is seen under certain conditions. He proposed a method to move the particles with a

different velocity than the fluid which eliminated the penetration. This is discussed

more later in this section. However, it does point out that initial particle placement

is important and must be considered.

A more unusual example given by Fulk (11) involved a smaller projectile im-

pacting a thinner target than Monaghan used. When the particles were placed on

a rectangular mesh, a non-physical peeling of the layers was observed on the front

of the target. That is, lines of particles separated as a whole). Some backsplash is

expected, but it was too extreme. A second calculation was performed where the

particles were placed on a rectangular mesh and then randomly perturbed by a small

amount around the mesh point. The output from this was much more realistic and

almost all of the non-physical peeling was eliminated.

A third example is for the Riemann Shock Tube problem in one dimension. In

this problem there is a pressure shock. However, numerical techniques in general do

not model a shock, but a steep pressure gradient of the form: P-. In performing

this test case, the velocity is not nearly reaching the peak value it should from the
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analytic solution. But by changing the particle spacing in a very small region around

the initial shock, the results were much more accurate. However, if the particles on

either side of the shock were placed too close initially, they tended to cause a crossing

of two particles and erroneous results.

From these three examples it seems that for even a geometrically simple prob-

lem, the initial particle placement must be considered. This is a topic for future

study and will not be addressed further in this dissertation.

2.3.10 Neighbor Searches. With all the simplicity that comes with SPH,

there are some difficulties. One of the biggest is the need to find the neighbors of

any given particle at each time step. To calculate the sums giveu previously for a

given particle i, all other particles may be used. Unfortunately, this would make

the method scale as O(N2 ) which could be cost prohibitive in computation time.

However, if the compactness of the kernel is taken into consideration, only a small

subset of the total number of particles need be considered for any given particle.

The question of how to efficiently find the particles that are within a small range is

known in computer terms ;-s range searching. In SPH it is more commonly referred

to as nearest neighbor searching (although nearer or near neighbor would be more

appropriate). Currently two methods are popular in the literature (although this

issue is not often addressed): linked-lists and tree search.

The grid generated linked list method is the older of the two and most popular

if h is constant in space. In this method a temporary grid is overlayed on the problem

domain. The grid spacing is carefully selected to match the kernel being used. For

example, if B-Splines are being used as the kernel, they have 2h compact support, so

the mesh spacing should be set to 2h. Then for a given particle, its nearest neighbors

are going to be in the same grid cell or the immediately adjoining cells. So this search

is only over 3, 9, or 27 cells for 1, 2, or 3 dimensions respectively. The linked lists

method allows for each particle to be assigned to a cell and for all the particles in a
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cell to be chained together for easy access. Creation of the linked list is only about

3N operations. When actually calculating the equations of motion, the outer loop

should be over all the mesh cells. This allows the forces between any two particles to

be calculated only once instead of twice. This method scales as N, N where N, is the

average number of particles per cell. Provided N, is sufficiently small in comparison

with N. this method is quite efficient and considered O(N). The biggest difficulty

with this method is when variable smoothing length is used. The grid spacing cannot

be optimum for every particle and therefore, could be much less efficient. Linked

lists are discussed in more detail by Hockney and Eastwood (20:277).

Tree searches became popular when authors started working with variable

smoothing lengths. They involve creating ordered trees based on the particle posi-

tion. Once formed, the trees can be efficiently searched to find the nearest neighbors.

Several different tree algorithms have been proposed, but the most popular seems to

be the oct-tree. This method recursively splits the region into octants that contain

the particles. Eventually the leaves on the tree are the individual particles. Tree

methods, in general, scale as O(Nln(N)). This makes them not quite as efficient

as the linked lists for fixed h, but they may be more efficient for variable h. Refer-

ences for the tree algorithms include: Sedgewick (52), Hernquist and Katz (19), and

Stellingwerf and Campbell (59).

2.3.11 Artificial Viscosity. Because of the smoothing nature of the SPH

method, it might not be able to handle shocks very accurately. But, in fact, if an

appropriate artificial viscosity term is used, SPH can handle shocks as well as any

standard technique. The original thought was to use bulk (-ahpcV.-) and/or von

Neumann-Richtmyer (aph2(V.16)2 ) viscosity terms from finite difference techniques.

This proved to be disappointing in shock tube calculations. So modified versions

of those were needed. A good summary of the work may be found in Lattanzio,

et al. (28). They first add the term shown in equation (2.44) to the conservation
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equations: h _,= c,(• + 2)if t6j-•j; < 0Woij iF"+V (2.44)
0 otherwise,

where 6,, = J,_- 6j, Fj = - i, ci is the sound speed, and ij 2 0.1h. This

term handles bulk and shear viscosities and is similar to the bulk viscosity given

earlier. However, in high Mach number shocks, this does not stop streaming (the

non-physical particle interpenetration). So a second term, quadratic in w is also

added. This term is similar to the von Neumann-Richtmyer term from earlier. The

final result is shown in equation (2.45):

'i= Itif ij-.,<0 (2.45)

0 otherwise,

where a and 3 are free constants, Zj = 1(ci+cj), and Oij = 1(pi+pj). This HiIj term is

added to the P term in the momentum and energy equations. Note: most authors
P.

use It instead of w for this second term. More information on artificial viscosity

and controlling penetration may be found in Lattanzio, et al. (28), Monaghan and

Poinracic (40), and Monaghan (43).

2.3.12 Artificial Heat Conduction. The artificial viscosity term discussed

previously often provides good results when modeling shocks; however, under some

severe conditions excess heating can result. This term is usually referred to as wall

heating from the classic example of a stream of gas being brought to rest against a

rigid wall. The excess heating problem was fixed by Noh (47) by adding an artificial

heat conduction term to the energy equation. An SPH version of the wall heating

term was derived by Monaghan and is given in equation (2.46):

N - _ _ _H, =2 e3 (F-F 3 ).VjW(r, -f,,h) (2.46)

j=1 Ai ir

= gi hc + g2 h2 (1V.gl- V.-), (2.47)
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where A•, = 1(A, + A,) and g1 and g2 are user supplied constants. The H, term

above is added to the end of the energy equation when necessary.

2.3.13 Penetration Avoidance. One of the difficulties of particle methods

applied to impact problems is that lines of particles can penetrate or stream throughi

one another. This results in a non-physical mixing of the materials. It occurs in

SPH because field variables (in particular, thc velocity field) do not have to be

single-valued. The lack of single-valued fields can allow two different particles with

different velocities to occupy the same position. Of course, a judicious choice of

initial particle placement can reduce this, but that is not solving the difficulty, just

masking it. Most, or all, of this can be eliminated by using an appropriate artificial

viscosity term (there are several examples in the published literature). However, in

certain pro,,ems, such as subsonic flows, this is not sufficient. Monaghan (41, 43)

suggested an alternative: move the particles at a velocity approximately equal to

the average velocity in its neighborhood instead of the velocity of the particle itself.

Equation (2.48) is the standard formula for moving the particles.

=t Vi,. (2.48)

The velocity is replaced with vi as follows

Dt = W(r - rj,h) , (2.49)
j=1 i

where fiij = 1(pi + p3 ) and c is a small constant. This concept can introduce extra

dispersion, but no dissipation.

2.3.14 Equations of State. The equation of state (EOS) has received

very little attention in SPH papers so far. The main reason is that the EOS is more

related to the problem being studied, than to the method itself. For the HVI problem

discussed in the previous section, an EOS that handles metals and high pressures
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must be used, such as the Mie - Grdineisen EOS. From the literature, Tillotson,

Mie - Griineisen, and SESAME library have all been used. As long as care is taken

in the implementation, the choice of EOS should not cause too many new difficulties.

Forms for both the Mie - Griineisen and Tillotson EOS are given below.

As described by Libersky, et al. (34) the Mie - Grifineisen is quite simple.

Pressure is a function of both density and internal energy as follows

P(p,e) = P(p)pocC( -2) + Fp(e-eo) (2.50)

P '(P) = f + (So _ILLL2 + (S" - 1)(3So - 1),v3 if p > 0 (Compression 5 1 )

I P if p < 0 (Tension)

p - 1(2.52)
Po

F = P°Fo, (2.53)

where F1, So, c0 , and po are material constants and e, is the initial energy. Also see

Anderson (1) or Seglettes (53) for more information.

As described by Benz, et al. (4) the Tillotson EOS is also relatively simple to

implement. The Pressure, P, is a function of both density and internal energy and

takes on one of three different values as shown in equations (2.54) - (2.56):

P. = ape + - + A( - 1) + B(f- 1)2 (2.54)
1 + s"' Po Pocop 2

Pe = ape (bpe + -- l)e-•(0-1) e-t(Pa-j)2 (2.55)
eop 2  

P

= Pe(e - e.) + P.(e', - e) (2.56)
el. - e.

where a, b, eo, po, A, B, e,, e',, v, and ý are constants that must be supplied by the

user. The P, function is used for condensed states, the P, function for expanded

hot states, and Pt for the transition between the two. The exact determination for
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which function to use for P is given in equation (2.57):

J PC ifp>pore<e,

P(p, e) = P if p < Po and e > e', (2.57)

Pt ifp<poande,<e<e',.

2.3.15 Strength Models. As discussed earlier in this chapter, material

models such as strength, fracture, and fragmentation can be important in modeling

impacts (especially for metals and at lower speeds). The references to material

models in the literature are mostly from Libersky, et al. (33, 34). These papers

are also the first ones in which extensive use of the continuity equation is used to

find density instead of just the SPH approximation. However, the main additions

in these papers are that of an elastic-perfectly plastic strength model to SPH. Key

to adding the strength model (constitutive relation) is replacing the pressure (P) in

the previous formulas with the viscous stress tensor (a,). The stress tensor is defined

in equation (2.58):

u=P6-S

or -f = Pa"8 - SO , (2.58)

where P is the pressure, 6 is a Kronecker delta tensor, and S is the traceless sym-

metric deviatoric stress tensor. The Greek superscripts are used to denote the space

direction with summation on repeated indices. Note: if the deviatoric stress is zero

(as in the case of purely hydrodynamic flow) this just reduces to the pressure as

before. There are several different formulations for the Stress rates, but according

to Libersky the most common is the Jaumann rate. This is given in equation (2.59):

(p 1 eli-•"6 ) + S-1RO + S1I3Rcm
3

= o'+ S. , + ., (2.59)
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where M is the shear modulus, i is the strain rate tensor, E is its traceless part, and

R is the rotation rate tensor. Formulas for i and / are given in equations (2.60) -

(2.61):

- 1 • '9 Vo (2.60)

3 va avo
2 (2.61)

SPH formulations for the above equations can be derived in several variations as

with everything else in SPH, but the forms given by Libersky, et al. are shown in

equations (2.62) - (2.63):

N
S= - [(v.' -v?)VýW(• - -,h) + (v I - S - •,h)

j=1
3- ia (2.62)NI

E -T [(v'? - v-)VPW(jrj - r-, h) + (vq - vý)VqW(r- - ir, h)] . (2.63)
jI Pi 3 ii V

To model the plastic flow, a von Mieses criterion is used. When the second stress

invariant, J2 = S"•,S,, exceeds the flow stress (Yo) the deviators are brought back

to the flow surface shown in equation (2.64):

Sao3 = S~c 3J. (2.64)

The above equations may be added to the others in order to solve for the stress

tensor and then the momentum and energy equations. As mentioned earlier, the

momentum equation is changed by using the stress tensor instead of the pressure

term; the energy equation is also modified by adding a term that has the deviatoric
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stress times strain. This new equation is given in (2.65):

Dei I__ = _ - (Pi D - Sa ej). (2.65)Dt Pi

2.4 Summary

Throughout this chapter, several equations and various forms of these were

shown. Although the set of SPH equations should be determined by the problem

being studied, the following is a fairly standard set and offers a good starting point:

Continuity:

Dpi N

j=1

Momentum:
Oti N_ m j + -;i+ I,., ViW ij
Dtj= P

Energy:
D tj 2 N j + - I (V'i - V-j)" - iW ii + Hi

3=1 P, P+

Particle Motion:

D-i
Dt

Equation of State:

Pi = P(pi, ei)

where Wij = W(Fi - r, h) is the SPH kernel, Hij is the artificial viscosity term, and

Hi is the wall heating term.
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At this point, the fundamentals of smoothed particle hydrodynamics and the

background application (hypervelocity impact), are complete. Based on this under-

standing of the method, and a fundamental knowledge of numerical analysis, the

reader can now progress to the new contributions for SPH presented in the rest of

this dissertation. Note: additional background material is scattered throughout the

next six chapters when more appropriate for clarity of understanding. The new con-

tributions are split into two major categories: the numerical properties (Chapters

III-VI) and the implementation (Chapters VI- VIII). From this point the reader may

move on to any of the six chapters, but I recommend that the reader start with either

Chapter III or VII, depending on their background and interest.
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III. CONSISTENCY

This chapter addresses the mathematical concept known as consistency with

regards to SPH. The basic concept of consistency is related to how well well the nu-

merical equations (SPH) approximates the physical equations. That is, consistency

is analysis of truncation error. SPH has two parts, a function approximation and

derivative approximation; so the truncation error of both of these is discussed.

The consistency is approached first by analyzing the method under the assump-

tions of sufficiently smooth data. This is done by assuming the numerical function

is smooth between the SPH particles. Since information on the function is not avail-

able on a micro-particle scale, this is usually acceptable. This analysis is performed

by taking a two step process. The first is known as the kernel approximation and

the second is known as the particle approximation. In this second step, consistency

results are obtained by taking the volume elements based on the particle spacing to

be equivalent to those based on the mass and density. This approach ends by proving

both the SPH function approximation and derivative approximation are consistent

and of order 0(h 2 , hAx).

A second approach to consistency is then taken by considering what happens

vhen a function is not smooth enough to apply the first approach. In the process,

a new version of SPH is developed that is consistent even if the function has a

discontinuity in it.

The work in this chapter, as with much of this dissertation, is performed in

one space dimension. However, the two approaches described above are both shown

to still hold in higher dimensions. Also as an aside to the chapter, SPH forms of

artificial viscosity and artificial heat conduction are introduced for later use and

shown to be consistent. That is, they vanish as h and Ax approach zero.

To start, a formal definition is given. The following general operators are

defined to use in the analysis in this chapter: P is the spatial partial differential
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operator and S is the approximation operator to P. For example, if the spatial

partial differential operator is the first order wave equation then P is 1. However,

in general P is taken as a non-linear first order operator. The following hyperbolic

equations may be defined for any dimension d as

Dt

DUT(X)XE
Dt

where X = (t, x .... , xd)

"V = ([0, T] x ft)

and 15 are the mesh points (particles) in V

The system is hyperbolic if Pi()X) = A(6, X)g, where the eigenvalues of the matrix

A are real and distinct (see Lax (30)).

Definition 5 (Consistency) Given any function f(X-) that is sufficiently smooth

in V (and ,V); let r(f(X)) - P f(X) - S f(X) for each X E D. Then the semi-

discrete approximation method is consistent (with the partial differential equation)

iff

IIr(f)Ill -- 0 as At, Ax o -. 0.

Reference: Isaacson and Keller (25) or Strikwerda (60).

In summary, consistency deals with the local truncation error. It is a measure of

how closely the approximation operator resembles the differential operator. The

error estimates needed to prove consistency for SPH will now be built.

3.1 Kernel Approximation

As mentioned in the Chapter II, the kernel approximation can be viewed from

the point of view of distribution theory. That is, the delta distribution 6(7* - F)

applied to f(F) results in f(fr). This property is what is approximated using the
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SPH methodology. However, instead of using the delta distribution, apply a kernel

function W to f(r-) and examine how the integral of this relates to f(r7). See

Stakgold (58) or Keener (26) for more information on distribution theory. The SPH

kernel approximation as used in this dissertation is shown in equation (3.1)

<f( 0 )>- fk(o) = jA f(r-)W(F.o- F,h)di (3.1)

where

J W(ro- F,h) df =1 (3.2)

h (the smoothing length) is a measure of the width of the kernel function W, and

0 is a spatial domain. Note, for the time being equation (3.2) needs to hold only in

the limit as h --+ 0. However, it is useful later on for this to be true for all h. It may

then be hypothesized: if W -- 6 distributionally as h -+ 0, then fk -+ f as h --+ 0.

There is obviously some numerical error in this approximation when h is not in the

limit; this needs to be made more exact.

Errors in the kernel approximation may best be seen by using a Taylor series

expansion with remainder. This is shown here for the one dimensional case only

(see the section 3.6 later for additional work). Assume f is sufficiently smooth (to

be defined more exactly later) so that it can be expanded a' ut x = x, and let

u = x - xo. Also assume the kernel W satisfies equation (3.2), is an even function,

and has compact support. Note at this time, under these assumptions on W, if

u E supp(W) (the support of W) then Jul • rch, where ic is the constant that

specifies the support of the kernel. That is, W(u) = 0 for luI > rch. Equation (3.1)

now results in

fk(x0 )= f (X)W(x- - Xh) = Jf +x,)W(-u, h) du

-- W(-u,h) [f(xo) + u f'(Xo) + f"(lo) du
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f f(X) j W(-u,h) du

+ f'(xo) fj u W(-u, h) du

+ ' I u 2 W(-u, h) f"(o) du,

where o = •o(u). Since W is normalized, the integral in the first term of the sum is

1. Also, since W is an even function, the integral in the second term of the sum is

0. Therefore, the result is

fk(x,) = f(x.) + Ek(f, xo) (3.3)

where Ek(fX.) = ' I u2 W(-u,h) f"(4.) du (3.4)

for &, E 0f.

To obtain a bound on the error term, Ek(f, xo), define

K 2

ek U2 pIf"(•)I. (3.5)

Note: for the kernels considered in this dissertation r < 9 (and is most often taken

as 2). By the compact support and normalization of the kernel noted earlier, the

bound is

IEk(fXoI U - W(-u, h) f"(ý)dI 1 f Iu2 1 IW(_u, h)IlIf"(jo) du
1 u2 W(_uh).(du = h2  W(-uh)du_ f. ,h2 W(-u, h)2e h

= ek h (3.6)

It is also easily seen that if f(x) = g'(x) then equation (3.6) still holds (Note: in ek

the f" term now equals g".). Also a higher order error bound is possible, but a new

kernel would need to be obtained that has successively higher order even moments

equal zero (see Chapter VI for a discussion of this).
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3.2 Particle Approximation/Rectangle Rule

As noted in the previous chapter from the published literature, a Monte Carlo

approximation (3.7) of equation (3.1) known as the particle approximation may be

obtained:

N~ fMf)
fn (r-) W(o - -,; = - ff(j) W(o - F,,h). (3.7)

1=1 -i 1= Pi

It was further noted

A,(K) = fkA(o) + En(f, r,), (3.8)

and the error term, E,(f,Lr), is proportional to O(iný). This implies that as
N -,(-- i 0 Vi E AK, then f,,(ro) -+ fk((,). This discussion from the

literature appears to be valid, but lacks most of the details I would like to see. Instead

of trying to fill in the many holes, alternative quadrature rules are investigated here.

Through this, it was discovered that by applying the most basic of the rules, the

rectangle rule, a reasonable error bound and results similar to Monte Carlo can be

obtained. That analysis is shown here.

Start with the general forward rectangle rule for one dimension (reference

Young and Gregory (70))

f (x)dx = (xi+1 - xi) f(xi) + E(f, xi, xi+,) (3.9)

1iwhere E(f, xi, xi+,) = -( - XX)f (f) ,E (xixi+i)
2

Note that in one dimension, the domain Q is an interval. Further, because the kernel

has compact support, the supported interval around i is just [i - ,ch, i + Kh]; [a, b]

is used for simplicity. Assume this interval contains Nk particles. Number them

l,,..., xN, and label the point immediately to the left of a, as x0 and to the right of
b as xNk+1. This may be seen in Figure 3.1.
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i - th 1 + tch

S... II I I If
Xo a X ........ . . XN,, b xN',+1

Figure 3.1 Partition for Rectangle Rule

The composite rule is then

f(x) W(,-x,h)dx = jf(x)W(,i-x,h)dx

= INk+l f(x) W(i - x, h) dx

E f(x) W(;i - x, h) dx

j=0 z

Nk,

= •E[(xj+,-xj)f(xj)W(i-xj,h)] + E,.(f, i). (3.10)
j=O

By compact support W(i - xo, h) = 0, so the j = 0 term in the sum in equation

(3.10) is zero. The equation is then

Nk

jf(x) W( - x,h) dx =NA
fofx) (&-~h~x E [(xj+l -xj) f(xj) W(i - xj, h)]

j=1

+ E,.(f, ;) (3.11)

where E,.(f,;) = NA;-(xj+1 -xj)'[f(ýj)W(i- j,h)k1  (3.12)
j=l

and ýj E [xj, xj+1]. To obtain a bound on the error term found in equation (3.12)

define

M: = suplxi+l - x I

K•C1

--= -I sup I[f(ý)W(i- ,h)]'I. (3.13)
3-2 6E
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To determine cl, note that the particles are chosen initially so that 2K - 2M, <

.VkNM/h < 2K + 2Mr. During a calculation, the particles should be tracked to

determine c1 such that NYk.M,/h < c1 K, where cl is a constant defined as 2 < cl < oC.

If c, becomes too large (e.g. 10) restart with a new distribution of particles. The

error bound is now

Nh 1 1

Nh

y•M e, __M•?Nke,.
j=1 2•1t•C

j=1 KC1K C1

Note that, cl is a gauge that is used in the above equations to verify that Ax becomes

dense everywhere, and somewhat uniformly. Provided that happens, cl will be close

to 2. So the error bound is

IE,(f,i)I < e,.hM. . (3.14)

A backward rectangle rule,

I+ f(x)dx = (xi+i - i) f(xi+l) + E(fpxi+,) ,

can be used instead of a forward rectangle rule. The analysis follows exactly as above

so many of the steps are removed:

Nk
f(x)W(k-x,hE)dx = Z[(xj+l- xj))f(xj+l)W(i,- xj+l,h)]

j=O

+ E,.(f, i)
Nk

= Z_[(xj - xj,)f(xj) W(- x3 ,h)]
j=1

+ E,(f,i) (3.15)

3-7



where 1E7(fj)I < ehM 1 M. (3.16)

Hence, the formula (3.15) is very similar to formula (3.11) and has the same

error bound. Finally, averaging the forward and backward methods obtains

Nk
f(x)W(i-x,h)dx = 2 Xi23i) f(x 7 )W(i-x 2 ,h) + E2(fIij

j=1

(3.17)

with the same error bound as the other two methods.

3.3 Volume Element Calculation

In the previous section, a volume element (Ax) was calculated by using the

particle position. However, in SPH a volume element is usually (if not always)

calculated using mass and density (m/p). In this section, two ideas are discussed

to show that these two concepts are similar to each othr-r. First, the two volume

elements are moved forward in time to examine how they differ after one time step.

Second, the two are equated with each other and some of the ramifications of this

choice are noted.

* Consider how the two volume elements change with time. Assume that the

relationship
AX r -- (3.18)

P

holds exactly at a given point in time, then it should still be close after the

next time step as will now be shown. This idea is developed in one dimension

as follows. At time 0, the equivalence is exact, since mass is assigned based on

initial density and initial particle spacing. Writing Ax in a general fashion as

Ax = (x+ - x_)/c. (for an appropriate constant c,) yields

D =V+ - v
Dtc
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and it can also be seen that

SD(1) = -m Dp

Dt p, Dt ppIDt

#,here v' is solved for using the SPH derivative. Now assume the relationship

holds exactly at time n and apply a time scheme. For example, use the basic

forward Euler method to find

AX'+i = Axn + At v+ - v-'

\C'

-= A) + At (_v)n

But since AXn =(M) then

A I- (in) = V+~v. _- ) (,)n] v)]
M At~x~.x

A .tL~r An+ V- (v)n]

This shows that the difference between Ax and m/p after one time step is equal

to the difference between two methods of calculating the velocity divergence.

When using the central space, c., = 2. So the first term in the brackets would

be a central difference form of the velocity divergence. This is second order for

uniform spacing, first order otherwise. So the term in brackets is the difference

between two derivative approximations, both at least first order. Hence, the

two volume elements differ after one time step by a term that is only O(Ax 2)

(higher order under some assumptions).

e Consider if the relationship (equation (3.18)) is taken to be exactly equal for

all time. That is,
m

AX - (3.19)
P
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To ensure this is maintained, the computer program must either calculate mass

or density using this formula. If calculating mass using the formula, the density

is solved using either SPH density-by-summation or SPH continuity equation.

This is a relatively small change from standard SPH, but conservation of mass

is no longer guaranteed. If calculating density using the formula, mass is

taken as constant in time (as usual) and equation (3.19) is used to arrive at

density. In one dimension this is a minor change, but in higher dimensions the

cost to find Ai may be extremely expensive from a computational standpoint.

This is because, as shown later in this chapter, Delaunay triangulation is used

in proving consistency in higher dimensions. This is a expensive process to

implement, but required in some circumstances to ensure consistency.

Hence, using either of these two ideas, the equivalence of volume elements calculated

by the particle position or the field variables should be attainable.

3.4 Consistency Result

Consistency for the SPH approximation of a function and its derivative may

now be proved in general. First, define the following operators

Identity Operator I u = u

Derivative Operator: P u -
dx

Kernel Operator Ku(xo) = u(X) W(x - x,h)dx

N M
SPH Operator S u(xo) = - uj W(xo - x1 , h)

j=l '

N m
SPH Derivative Operator S' u(xo) = -' uj W'(xo - xj, h)

j=l P1

where W' = aw
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Lemma 1 (Consistency for the SPH Approximation) Given any function

u(A) E C2(Q); and given a kernel function, W, that is even, positive, normalized,

and has compact support, then the SPH function approximation is consistent with

the identity operator under the sup norm provided Ax is equivalent to m/p.

Proof.

fI-u - Suli < = IIIu -KA'u + Ku - Suf, • flu -Kul,, + iIKu -Sull. (3.20)

Based on equations (3.3) and (3.4) obtain

IIu(x)- Ku(x)l = lu(x)- [u(x) + Ek(u,x)jl = IEk(u,x)l

and from equation (3.6) obtain

Iu - Ku llo = sup lIu(x) - Ku(x)l = sup lEk(u,x)l < ekh'. (3.21)
zEfl xEO

The last term in equation (3.20) becomes

flNk mj
Ku(x) - Su(x) = W(X- di - : - u, W(x - xj)

j=1 Pi

= ju(X)w(x - )ý d -(X ( x) )

+ E X• 2 - •j uj w(X - xj) .
j=1i

But _ is the one dimensional volume (ie. distance) and can be taken to equalP3

(xj+l - xj- 1)/2. It is taken as exactly equal in this proof, but can be bounded as

well based on results in the previous section. Therefore, the last sum is exactly equal
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to zero. From equation (3.17), Ku(x) - Su(x) = E,(u, x) and from equation (3.14),

IIKu-SuI[[o = supIE,(u,x)I < ehM_.. (3.22)
xEfl

Thus combining equation (3.20) with equations (3.21) and (3.22) results in

I['u-Sujko <_ ek 2h + e, h Mx.

Noting from equations (3.5) and (3.13) that ek and e, are independent of h and M,

yields

IIIu - Sull -- + 0 as h, M, --+ 0.

Note: In the lemma u was required to be C2(fj); however, it is sufficient to be C1(1)

provided u" exists and is bounded. This is because existence and boundedness was

all that was required in the proof and in equations (3.3) and (3.6).

Lemma 2 (Consistency of the SPH Derivative) Given any function u(X) and

its derivative u'(X) where u(A') E CQ(1); and given a kernel function, W, that is

even, positive, normalized, C', and has compact support, then the SPH Derivative

Operator is consistent with the derivative operator under the sup norm provided Ax

is equivalent to m/p.

Proof.

IIPu-S'ullo = lIPu-Ku'+Ku'-S'ullK < IIPu-Ku'Ijoo+lIKu'-S'uIloc. (3.23)

Based on equations (3.3) and (3.4) obtain

JPu(x) - Ku'(x)I = ju'(x) - [u'(x) + Ek(u',x)J] = IEk(u',x)I

= j f z2W(-zh)u"..(4)dz'
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and from equation (3.6), and the sentence following, obtain

IIPu- Ku' II = sup IPu(x) - Ku'(x)l = sup IEk(u',x)I < e'h 2 (3.24)
xEfQ xEtQ

I K 2

where ek = - sup lu"'(0). (3.25)
2 ýEQ

The last term in equation (3.23) becomes (using the compact support of W)

Ku'(x) - S'u(x) = u'(V) W(x - 0) dý - Uj W'(x - Xj)
j=1 Pj

= u(W)W(x- )Olj - u(ý)-W(x-C)dC

Nh mi

- - uW'(x - Xj)
j=I Pj

=[u(C) w'(X - C) dC - E -j u, w'(x - x,)
1j=1 Pi

Nk _j1 XjISu(C) W'(X - ) dC - E Uj W'(x-x,)j

P=1

fuNW(xk d - jXi+ x ) wI x.

+ 1: 1)~ -1 mIU, W'(x - Xj).
j=1 R' 2 pi

Once again, ~Lis the one dimensional volume (ie. distance) and is taken to equal

(xj+l - xj-,)/2. As in the previous lemma, this term could also be bounded based

on results in the previous section. Therefore, the last sum is exactly equal to zero.

From equation (3.17), Ku'(x) - S'u(z) = E,(u', x) and from equation (3.14),

IIKu' - S'ull = sup IE,(u', x)I _ e' h M., (3.26)
xEfO
KCI

where e' - sup I[u(W)W'(x -)0' Y. (3.27)2 (En

Thus combining equation (3.23) with equations (3.24) and (3.26) results in

jIPu-S'uiko < e2 + e ' h M. .
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Noting from equations (3.25) and (3.27) that e' and e' are independent of h and Mr

yields

IIPu- S'uIK --- 0 as h, M -* 0.

Note: In the lemma u was required to be C3 (fQ); however, it is sufficient to be C2 (Q)

provided u" exists and is bounded. This is because existence and boundedness was

all that was required in the proof and in equations (3.3) and (3.6).

3.5 Applying SPH/Linearizing

The primary equations used in hypervelocity impact are the Euler equations

of gas dynamics. These and the SPH semi-discrete forms for these (or at least one

version) are shown in Chapter II. Methods as to how SPH forms for these or any

other equations may be derived in a consistent manner are discussed. There are two

primary methods that should give comparable, yet slightly different, error terms.

These are the full equation method and the spatial derivative method.

1. Full Equation Method. This approach was introduced by Monaghan (36). It

involves taking a given equation, multiplying by the kernel, and then integrat-

ing both sides over all space. This equates to stating that if a and b satisfy

Da 9b
Dt T X

then (- =- _ .

Applying the kernel approximation and corresponding error analysis on the left

side of the equation yields 2 back plus an error term. Similarly, applying theDt

particle approximation (including the integration-by-parts) and corresponding

error analysis to the right side of the equation yields the SPH semi-discrete
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form of the problem. This can be summarized as

Da N_,-) b, W1 - Ek(D,\- . - E,(b, x). (3.28)

j=1 P1

The notation Wi' means W'(xi - xj), is standard in SPH, and is used through-

out the rest of this paper. The difficulty of this method comes when the right

side of the equation cannot be written as the derivative of some function. For

example,
Da ODa = -c -' (3.29)

In this form, the integration-by-parts step cannot be used directly to move the

derivative from the function onto the kernel. A linearization step is usually

included to eliminate this difficulty. So for variables a, b, c and linearization

error, El, which is defined by

El= c -ob _ 8cab)

So, if

Da A
Dt - -c

then Da) = -< , - - + Et.

Now use integration-by-parts on the right side and apply the particle approxi-

mation. This situation is summarized as

O = -c, -mI bj Wj' c EE. (bOa)
j= l - Ek , + E1 - cEr(b,X,).

Dt j~~=1 Pj k(D X) +E

(3.30)

Concern over the size of this linearization term led to the derivation of a second

method.
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2. Spatial Derivative Method. This approach does not deal with the entire equa-

tion, just the spatial derivatives. In the earlier parts of this chapter, the partial

derivative was shown to be equivalent to the SPH derivative plus some errors.

This relationship may be used and substituted directly into an equation. This

equates to stating that if a and b satisfy

DaxA (3.31)

Da Nb
the -m---b , + E,.oO-,x, - E,(b,x,) . (3.32)

J=1 Pi

This result compares quite similarly with the full equation method found in

equation (3.28). In addition, with this method, if the right side of the equation

involves non-linear terms (such as (3.29)), no linearization step is done. Just

substitute into an equation the proper terms from the consistency analysis. So

for variables a, b, c, if

D a = c b3-3

Dt cx ' (3.33)
then Dat - Nc I-bWd'•(b)_xDa._ -- _. + cEN - cE,(b,x,) . (3.34)

j=l Pj

Taking the difference,: betA--en the two methods, eqn (3.30) - eqn (3.34) results in

E, = E, Da, - xi + cEk ( AIx, = -Ek c-Ax,x) + cEk (A' xi)

(Dt' )9 Tx 49)

This shows that El equals the difference between two O(h2 , hAx) terms. So it is of

the same order as the error already in the method. This allows for the conclusion

that either method of developing the SPH form for the Euler equations is acceptable

and consistent. It can also be concluded that the concern over linearization error is

unfounded.
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One final note, consistency analysis is based on the assumptions of smooth

data. Applying a method in an area where there is a discontinuity could result in

E, being larger; showing a larger difference between the methods. The integration-

by-parts step that is performed in both methods introduces boundary errors in this

case and causes these differences. This comment is meant to emphasize the differ-

ence between the mathematical construct known as consistency and a real world

application. It also leads us to the next section on non-smooth functions and points

to one of the primary methods of controlling the errors near a discontinuity, artificial

viscosity (discussed at the end of this chapter).

3.6 Non-Smooth Functions

The lemmas given earlier in this chapter only applied when functions are suffi-

ciently smooth; which is the traditional definition of consistency. But it is not always

the case in actual calculations. There are at least two ways to resolve the question

of how to prove consistency when functions are not sufficiently smooth.

First, proceed as if the functions actually were smooth. Since nothing (or little)

is known about the function between particles, it is acceptable to simply assume the

function is smooth there. This has the effect of numerically solving a differential

equation for a slightly different problem: one with large gradients instead of shocks.

However, the consistency analysis of section 3.3 would directly apply and this is the

concept that is often taken. Also, in the limit as Ax -. 0 this smooth problem will

approach the discontinuous problem.

Second, derive an SPH form that allows for shocks while still being consistent.

The remainder of this section does just that.

3.6.1 Scalar Equations. The goal here is to develop a kernel approximation

and corresponding SPH particle approximation for u'(xo). This is a rather long and

tedious process, so the details are left out here and placed in Appendix A. Consider
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the interval shown in Figure 3.2. Let a < x, - Kh and b > xo + Kh. Assume

there exists an integrable discontinuity in the function, f(x), at d. For now assume

xo <d < b.

a Xo d b

Figure 3.2 Non-Smooth Data Consistency part 1

In section 3.1 a Taylor series expansion technique was used to develop the kernel

approximation. However, an expansion cannot be performed across a discontinuity,

so the interval [a, b] must be split into [a, d) and [d, b]. Let x, be a point in [d, b] and

perform expansions about xo and x, in their respective intervals to obtain

f(xw(xo-x)dx = f(x.) + [f (xi)-f(x.)]jW(xo-x) dx +0(h) . (3.35)

Note that the second integral is only over part of the interval and therefore is not

equal to one. This implies for non-smooth data when xo --* d

bbf (x) W(xo, -- x) dx -o'+ f(x,,) as h -- 0 .

However, retaining the second term on the right-hand-side of equation (3.35) (-, Af)

allows for the method to be consistent (in the context of this section) and of order

O(h).

Now consider f(x) = u'(x), where u', u", and u"' exist everywhere except at d

and are bounded on [a, d) U (d, b]. Substitute into equation (3.35) and then integrate

by parts. Unlike earlier in section 3.3, the boundary terms (in this case across the

discontinuity) do not vanish. The results are
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db

u'(xo) = -[u'(x 1 ) - u'(xo)] W(xo - x) dx + [u(d-) - u(d+)]W(xo - d)

+ u(x) W'(xo - x) dx + O(h), (3.36)

where d- and d+ are the limits of d from the left and right respectively. Since x,

previously was chosen arbitrarily in [d, b], now let xi = d. Expressions for u'(d) and

u(d-) must now be found. The expression for u'(d) is obtained in a similar process

to what was done so far while the expression for u(d-) is taken from a Taylor series

expansion around xo. The results are

U'x)=1 U()[W(X,-X
u'(x~) = [ - (d - x,,)[W(x,, - d) - (I - O)W(O)]] {j[f. ~ -x

-(1 - 0)(d - x,,)W"(x 0 - x)] dx + [u(x0) - u(d)][W(x0 - d)

-(1 - 9)W(0)]} + O(h) , (3.37)

where 0 is a measure of how close xo is to d defined by 0 = 2 fd, W(xo - x)dx

In Appendix A, further simplifications are made to obtain a particle approxi-

mation form of this equation; but that work is omitted here. Also consider the shock

on the other side of xo as shown in Figure 3.3 in the Appendix. This follows exactly

as in the first case, so all the steps are left out in this case and the reader is referred

to Appendix A.

I I I
a d Xo b

Figure 3.3 Non-Smooth Data Consistency part 2

Now combine the results contained in equations (A. 1) - (A.21) and surrounding

work in the Appendix for a particle xi on either side of the discontinuity as follows:

Given xi, let d be the location of a discontinuity, xd be the nearest particle on the
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opposite side of the discontinuity from x,, and use the usual format for the kernel

(W(1'. h) =/•(f). Provided xd is quite close to d the results are

0 = 2j '_ K(v)dv (3.38)
J0

B = [W4 id - (1 - O)Wo](xd - x,)sgn(xj - xj) (3.39)

u'(x)== mj uP . 1 B) m uj[BW -j (1 -)(xd x1 )K'Vj]

-B Ui )} . (3.40)

Note that 0 < 0 < 1 and to ensure 0 is well defined at the ends investigate equation

(3.40) near 0 and 1.

(i) As Ix1 - di increases, ie. zi moves away from the shock, 0 increases until

Ix, - dl = Kh where 0 equals 1. At that point 0 stays at 1 no matter how far x, gets

from d. From equation (3.40) if 0 --* 1 then

N•'()(B) (ui• wu•d)

But B also goes to 0 in this case since W has compact support. Therefore when

Ig - dl = ,ch, the correction term drops completely out and yields the smooth data

result N M
u'(xt)=Z = E uWj w'.

j=I Pj

(ii) As xi -- d, ie. xi moves towards the shock, 0 decreases to 0. 0 never

actually reaches 0 since x, cannot equal d under the assumptions, but it can get very

close. Therefore consider some of the terms as 0 --. 0. Using equation (3.40), let

d = Xd = xi + -h, h > e7 > 0 and substituting to obtain
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u'(xi) N B) { uj W'(xt - X,) + 1 0 0 (xi + ch - xi) W"(x, - xj)

+B [u(xi) - u(xr,+ h)H 3.1
0 [ ,-(x 1 7+-a h (3.41)

B = [W(x,-xi:-h)-(1-0)W(O)](xi+eh-xi)sgn(xj-xx,- h)

= -Eh[W(-Eh)- (1 - 0)W(0)J.

Substituting B into equation (3.41) yields

u'(x,)= 1 [W(-h) (1 -I] { m W:. + (L( ehWt]- T - ~ 1i=1 Pi

+ 1[u(xi) - u(xi + eh)][W(-eh) - (1 - O)W]}.
0

Expand the kernel in a Taylor series. This assumes the kernel has a Taylor series

expansion. Note: even if the kernel does not have a series expansion the analysis

after this will still follow, but it is just more confusing

W(-ch) = W(O) - chW'(O) + 1 C2h2W"(O) + ...
2

Substitute to find

u'(xi) = E- ih[W(O)-(i)W'(O)] {N ,Ij2uu[W~' + (1 - 0) Wj]

+[u(xi) - u(x, + ch)][W(O) - 'hW'(0)]} + 0(_2)

From equation (3.38) and d = xi + eh, 0 becomes

0 = 2oK(v)dv. (3.42)

Then 0 -+ ,as e - -+ o as• --+ 0. It is necessary to know if L is bounded as
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-. 0. Use L'H6pital's Rule to find • -- • and by the Fundamental Theorem of

Calculus from equation (3.42), "0 = 2K(e). Therefore

hh h
9 2K(e) 2W(c)

Then add the requirement that K(u) -,,* 0 as u -- 0. For example if K(u) is a

polynomial it must include a constant term. So in conclusion, 1 -h- 2Wo as e --- 0.

Hence

N mi [W: Wi" ]+Au1[2 W2(O)-_ W(O)]
u'(xi) E--* •"-u 3 [ + 2 ] (3.43)J=1 Pi 2W(0) +2W(0)

asx , -d where Aud = u(d+) - u(d-).

Therefore, equations (3.38) - (3.40) are well defined at the limits of 0.

3.6.2 Euler Equations. U)sing the consistent form of u' just derived, new

SPH forms of the Euler equations for one dimension may be derived. As with all SPH

equations these are not unique, but simply one possibility. Note: in the equations to

follow, the notation Ud implies the value of some field variable u at the closest point

of the opposite side of the shock from xi.

Continuity Equation:

p = -(pV.i ) = V..Vp - V-(p1) = VP' - (pv)'

p, = vi N{ m W - 1 B) [Nmi 'p(BW + (1- O)xdiW)

- {Y •-'• ipjvW' - 2O-B) [z• mPJVB'~ +(1 -- O)xdiWj)"
B (PVi - PdVd)
P zi P J

(Xi - Xd) 1J
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p.A~ -Z(vs-VV4 <7 - (M9'B) Zm'- t'j)[BW.' + (I - O)Xdiw:Ij]

+ BP (VV) (344)
(Xi -d)J

Note: if using the SPH density-by-summation form instead of the continuity equa-

tion, a correction is still required because

f(x)W(xo-x)dx = f(x.) + [f(xd) - f(x.)] (1 -0).

f f(X) = ( 2 )jb (l--x)f(Xd)

so f(Xi) = (LI f[xWix+- rfjd W• f(Xd) (3.45)

3=' P3  (1 + 0 \+ '=

Hence pA = =E-m'i4 + - (3.46)
3=1 (1+0

An alternative to using f(Xd) explicitly, is obtained by using equation (A.6):

f(X)f(Xd) - f(X)W(Xd- x)dx .
2 J

Substitute this into equation (3.45) and simplify to find

N M ) + ( I ') N r f,(Wij Wi). (3.47)f (Xi) = E--"'fj W'j + 0 E •

j=1 +i kPij
Hence pi = _m3 W4,j(1 ---)Zm.(sdi)W, (3.48)

j---1 0 j----

Momentum Equation:

V 2 VP -P2 V = 2-p ' -
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-B (NPi -d

-~~~~x - I[xp(W ()])x 1 J

E --W"~ [ (m)~B Wi' I-0,,9XW,,)

"'i= =j p (0 s ) {pj m (p4 [W

B (P) Pd Pd

+( )XdiWi'j'l + B 2 P, P, Pd d (3.49)

Energy Equation:

= V-6 - -(V.(Pig) V-i.vp) = p .(HPv) + vp')

=i -; mj(v2 --v1 )W!.- ~ mj - vj)[BWi', + (1 - 0)-XdiW'

Bý - Vd)} (3.50)

Also,

(P V.v. (p6- = v p,- P)

=j j~~flv (~~B ~!2(B W'j + (1 - 0) Xdi Wi')

B 
(P 

Pd)](X,7 Xd) A P PdJ

- ~ ~ V --- W" -j Is--- )I (B W,' + (1 - 0) Xd iWi')

B Pii PdVd']'

TX, -ý Xd) AP Pd I] J
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NZ mj i (Vi - - B mj- -i(vi - v2)[BWj + (1 - O)xdiW"J]
=1 + i j

+ B PvVi - Vd)} (3.51)Jr(Xi - Xd) PdI

Average equations (3.50) and 3.51) to obtain

1N 1 (t )(1pl B, +nj
j=B ( - V d

x(vi - vj)[BWij + (1 - 0)xdiWij] + B (vi -- vd)2 ) Pd +± } (3.52)

To actually apply these new SPH Euler equations, a shock capturing or detection

algorithm is required. In this way, 0 can be calculated for each particle at each time

step without having to track the shock, which is usually very expensive. See Chapter

VIII for more information on shock capturing techniques.

3.7 Higher Dimensions

So far in this dissertation, most of the consistency analysis has been performed

in one dimension. However, it can be extended to higher dimensions. Since the work

here is similar to that already done, many of the details will be omitted.

The analysis from section 3.1 on the Kernel Approximation is done in a straight-

forward manner following exactly the same process. However, it involves using Taylor

series expansions for functions of more than one variable, which is a more compli-

cated process. It can be simplified by using the following notation (note: for two

dimensions terms involving z will not appear)

r= - = (X-Xo, y-yO, Z-Zo)

g v=(X - Xo) T+ (Y - Yo); + -Zo) T
a2 a2 a2

III .- ] V 1 (X - X ol -•f + 2(x - x o)(y - y.) _ _• + "" + (Z -Zo) - -i2 .
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Then obtain

fk(() r fV-W( - F-,h)di' = f( + ) W(-i, h) di

J W(-t, h) [f(r,) + [iU.Vlf(f') + I .Vl2f (G)] dil

f(r-,) j W(-iA, h) d6i

+ Vf(r).) j / W(- i, h) du-

+ fa [I .V]2f(-)W(-ff'h)dii"

If W is normalized, as shown in equation (3.2), then the integral in the first term

of the sum is 1. As in the one dimensional case, if W is a symmetric function, the

integral in the second term of the sum is 0, as is now shown. Let W(il, h) = K(S)

and then in two dimensions

1 JW(-f-,h) dil 'I I 14 -iK (tl) dx dy

h2 Joh]

1 ih [(sin0,-cos0)12 r r2K(r) dr = (0,0),

where K is defined as before from the support of the kernel. That is, W(11) = 0 for

IJii > Kh. Similarly in three dimensions

j - W(-iih) dii = 1h-- 1 iiK ) dxdydz

_ 1j[•hj21,, T (r cos 0sin b,r sin 0sin 0, rcoso) K (hr) r2 sin e di dO dr

=h h j [ (sin 0 sintk, - cos 0 sin, 0 cos ) 21 r 3 sin K (r) do dr

1 Joh1--(0, 0, 2r cos 0) r 3sintOK ( d) dO dr
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- 1jh- (0,0 .sin20) r 3 K (r) dr = (0,0,0).

Therefore. the result is

f(Yo) = f(r-) + Ek,(f, 7o) (3.53)

where Ek(f,r•) = 2 . [g-V]2 f(o) W(-ia, h) d9i (3.54)

for G E fE

To find a bound on the error term Ek(f, r-), define

K 2d2 2 (
ek = -2 Sup ID 0f

where d is the dimension (2 or 3) and D2 means any second partial derivative (pure

and mixed):

I Ek (f,~I = j[7Vf()W(-ii, h) diZ :5 ' II -. V]2f(-)I(ilhIj
h~2 [ i D.2f ( II(Ci~ ) 2i [U ekU, )I

-U- hl d9 !- .h W(9,h)L~i2 ID W( 2K 2

Sek h2 W(-ii, h) d9 = ek h (3.55)

The work in section 3.2 on the rectangular rule is also applicable to higher

dimensions, but it may not be as obvious. The following procedure is given for

two dimensions but easily generalizes to three dimensions. Given a set of particles,

triangulate the particles using a procedure known as Delaunay triangulation, ie.

create a triangular mesh with the particles as the vertices. Then create a Voronoi

polygon by placing a point at the centroid of each triangle. Connecting these points

around a given particle creates a convex polygon containing exactly one particle.

Further, this unique polygon has the property that any point inside it as closer to

the particle contained in it than to any other particle. If this procedure is carried
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out for all particles in a given region. the region will be completely covered with non-

overlapping convex polygons (CP). Note: for more details regarding this construction

see papers on Delaunay Triangulation and Voronoi Polygons, such as Baker (3),

Kennon (27), and Sloan (56). Figure 3.4 contains a diagram of this procedure.

.0.0

'0*/

0 Particles 0 Points

Figure 3.4 2-D Particle Triangulation

To integrate over any of these convex polygons, create triangles with one vertex

at the particle of interest and the others at consecutive vertices along the boundary

of the convex polygon. Then use a composite rule integrating over each triangle.

Finally to integrate over the triangle map it to a right triangle and apply the one

dimensional Rectangle Rule twice (once in each direction). See Figure 3.5 for a

picture of this procedure. So for some domain Qk there are Nk convex polygons

covering this domain and

INh

f Ny f(x,y)dxdy.
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6T6=

S~~T4..

0 Particle o Point

Figure 3.5 2-D Particle Convex Polygon

Then for any convex polygon, CPj, there are NTj triangles, T, within CPj, and

NT, NT,

11cP f(,,y)dxdy = If(r,Y)dxdy = EIaif(x,,y,)+ei]

= Ajf(xj,yi) + Ej,

where a, is the area of triangle T1 and Aj = I aj is the area of the polygon around

the particle at (xj, yj).

Hence

Nk Nk Nk>f12]] f(x,y)dxdy = E[Ajf(xi,yj)+Ej] = _Ajf(x,,y 3)±E.
j=1 A Pi j=1 j=1

As in the one dimensional rule, A, (Ax in one dimension) can be taken to equal -k
P)

The error bound is

IEI _ Nk max E[I _ Nk max INTj max eIl <_ Nk maxINTj Ma M. ea[,
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where Ma is the area of the largest triangle and ea is a small constant. Allowing for

NT ,k Ma ,, 7r h2 02 and for some small constant ed

jEf < edh2 .

3.8 Artificial Viscosity/Wall Heating

In many numerical methods, artificial viscosity and artificial heat conduction

(wall heating) are used to handle physical problems, especially near discontinuities.

This dissertation only address three forms of artificial viscosity and one form of wall

heating found in the published literature for SPH. In this section the techniques are

introduced for later use and while simply commenting that they are consistent. That

is, they vanish as h -- 0. The details of the consistency analysis may be found in

Appendix A.

Starting with artificial viscosity, the three forms are attributed to: Monaghan,

et al. (37), Hernquist and Katz (19), and Lattanzio, et al. (28).

1. Monaghan. For the SPH form, in the momentum and energy equations

replace the - term with P + Ml where the function -[ij = II(xi, x,) is defined by

-a 0.5(ci + cA)ui ± i (3.56)
r~i 0.5(pt + pj)

{h(vi -v.; -(xi - xj) (vi - vA).(xi - xj) < 0
tti = (xi - xj)2 + 77h0 (3.57)

0 otherwise .

In these equations c is the material speed of sound, q/ is a small constant (often

.01), and a and /3 are user specified parameters. These last two are sometimes

referred to as the artificial viscosity coefficients and are usually in the range [0.5, 3.01.

In Appendix A, the artificial viscosity term is shown to be consistent with (when

3-30



S< O)

akh d Pdxv 2_ Oxhl p (av2 (3.58)
2p Tx ICT YT d

With the h factors present, this form will vanish as h --- 0, maintaining the consis-

tency of the overall method.

2. Hernquist and Katz. For the SPH form, in the momentum and energy

equations replace the `. term with L + !H where the function Hij = FI(x,,xj) is

defined by

H,. = q- qj (3.59)

q ,jh~pict V. vii + th~p•(V. v)• (vi - v,) . (xi - xj) <0 (3.60)

0 otherwise

no'e : (V.v), -i mj(Vi -vj)Wii, .
Pi j

In these equations c is the material speed of sound and a and f are user specified

parameters. These last two are sometimes referred to as the artificial viscosity coef-

ficients and are usually in the range [0.5,3.0]. In Appendix A the artificial viscosity

term is shown to be consistent with (when 0 <0)

crhcav (3.61)
p lax p a

With the h factors present, this form will vanish as h -- 0, maintaining the consis-

tency of the overall method.

3. Lattanzio. This form is very similar to the Monaghan version Therefore, the

derivation should follow exactly as in the Monaghan case. In the SPH momentum

and energy equations replace the Pterm with .(1 + H) where the function I =
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L1(x,, xj) is defined by

Hli = -api. + ,3'12 (3.62)

h(=- vh.(7 x ,-) (v,-v). (x,-xi) <- (3.63)
/Aij = c((Xi - Xj)2 + 77 )(i-r) X j (3.63)

S0 otherwise.

In these equations c is the material speed of sound, 77 is a small constant (often .01),

and a and /3 are user specified parameters. These last two are sometimes referred

to as the artificial viscosity coefficients and are usually in the range [0.5,3.0]. In

Appendix A the artificial viscosity term is shown to be consistent with (when 0' <0)

crh8 a 9av] _T 2 rv a [ a 21 (.4

With the h factors present, this form will vanish as h -+ 0, maintaining the consis-

tency of the overall method.

4. Wall Heating. There is currently only one form in use, attributed to Mon-

aghan (41). To implement it, add an additional term H in the SPH energy, where

N (qs + qj) (ej - ej)(xi - xi) ,
H,= :jW'. (3.65)j=H .5(pi + pj) ((xi - x')2 + 710) W3

q. = glh,c.IV, vl, +9 2h,•(V ) (3.66)

(V -V).= -1 E M m(V. - VA jw'.(Vv.)o = 1o

In these equations c is the material speed of sound, Yj is a small constant (often .01),

and g, and g2 are user specified parameters. These last two are sometimes referred to

as the wall heating coefficients and are usually in the range [0.25,1.5]. In Appendix

A the wall heating term is shown to be consistent with

1V. (QVe). (3.67)
p
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The Q term contains factors proportional to h, so this term will vanish as h -+ 0,

maintaining the consistency of the overall method.

3.9 Summary

In this chapter, consistency of the SPH method was analyzed. The key re-

sults were the derivation of truncation error terms and the identification of bounds

for those terms. For SPH, as usually implemented, those bounds are of order

O(h2 , hAx). This implies the numerical method will be close to the differential

equation for sufficiently small h and Ax. There are two basic assumptions that went

into these results. First, that the function being approximated is smooth. Second,

that volume elements calculated by the particle position equal those calculated by

mass and density. This second assumption departs somewhat from standard SPH

and comments on how to control this assumption are included in the chapter.

In addition to the work just described, a second approach of proving consistcncy

was taken when the function being approximated has a discontinuity in it. This

results in the derivation of a first order SPH approximation that is consistent even

near a shock. Also in this chapter, the consistency of artificial viscosity and wall

heating terms were analyzed for later use.
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IV. STABILITY

This chapter addresses the mathematical concept known as stability as it ap-

plies to SPH. Stability is essentially the study of error propagation in numerical

methods. As such, this is a natural continuation of the error analysis begun in the

previous chapter. Two different approaches are taken in this chapter to investigate

the stability of the semi-discrete (spatial) approximation. A semi-discrete approx-

imation is obtained by discretizing the conservation equation Du = -[f(u)]. onlyDt

in space to obtain D- = -S(f(u)). The result is a system of ordinary differential

equations in time.

First, a linearized approach is taken in which an instability is indicated. This

approach develops an amplification matrix from the Euler equations by representing

the field variables as perturbations around equilibrium points. The system is lin-

earized in the perturbations allowing Fourier analysis to be performed. Assumptions

are made that the data is from a uniformly spaced, smooth data problem. From

this work, the resulting matrix equation is analyzed to determine if there are any

amplifications (or growths) in the perturbations. To keep the system well defined,

the eigenvalues of the amplification matrix must have non-positive real parts. This

form of stability analysis is closer to what Strikwerda (60:51) calls dynamic stability

than to numerical stability, but is just as important.

Second, a total variation approach is taken in which a new SPH formulation

is developed. The total variation approach is better than the linearized approach

for non-linear equations, but is much more difficult to apply. In fact, neither the

stability nor instability of common SPH forms can be determined with this. So, the

approach taken here is to develop a total variation stable version of SPH starting

from the basic one dimensional wave equation. This concept is then generalized for

use with the Euler equations.
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Although the two approaches differ in how to obtain stability, the goal of both

is the same: to analyze and comment on the stability (growth or errors) in SPH and

propose other forms that can alleviate any difficulties found by the research.

4.1 Linear Stability Analysis

This analysis is performed by taking a set of one dimensional SPH equations,

linearizing them, and investigating the properties of the eigenvalues from the result-

ing matrix equation. This work is performed in detail for one set of SPH equations

and then indicated how similar results are obtained for many other forms. All the

forms arrive at a similar unstable condition, indicating it is fairly fundamental prob-

lem in SPH. A note is made that another group of analysts first found this instability

and the work here extends and expands upon those findings. Finally in this section,

artificial viscosity and wall heating terms are reviewed as possible stabilizing effects

and found that they do not remove the fundamental instability. The results from

this section are used in the next section to propose stabilizing techniques.

4.1.1 Analysis Details. The following are the one-dimensional set of SPH

equations used in this analysis (for a particle s)

N

S= ( m 1 (vI- Vw'V3
j= 1

N) --- fj + . W/;
j=s

j=1 (vi Ps

;s= vs. (4.1)
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Assume the field values may be accurately represented by perturbations (0, v, ., !)

around equilibrium points (0, P, e, x) as follows

Ps = s t/

Ps Os + 03

X. X±+ x. (4.2)

Then

N

P3 ,= + m 3 (b. - + v3 - vI) W:,
j=1

Vs + E's Mj- ( P += (a, + •P1)2  (a,3g,)
+=1) (Pj ( ( + -

SE + ) (p, + 03)2 3 S 3 8

X+ = i3+v 8 . (4.3)

Values for the kernel, W, and the pressure, P, at the perturbed points need to be

found. First, expand the kernel in a Taylor series as follows

w', = W'(x 8 - X,) = w'((-- - -,) + (x. - x,))

= w'(to- ,j) + (X3 - X,) W"(18 - ±j) + O(X2 )

- Wi + (X3- xi)Wi-1 + O(X2 ). (4.4)

For the pressure, consider, P = P(p, e), then pressure has the algebraic form: P •

A + Bq + Ce where A = P(A, ý) and h, C > 0. Further,

1 1 20 0
(p +0)2 p2 #3
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This gives the algebraic form

P _ A±BO+CF _ A+B+Ce + O(0 2,E2 ) S=2( + (P),

where A =
2A

B 
-3

C = -(4.5)
P2

Substitute equations (4.4) and (4.5) into equation (4.3), dropping 2nd and higher

order perturbation terms. This results in the following equations

N

J=1

N N

E Z mP(. - W)W'' + E m, [(RV - V3 ) W;'
j=1 =

- ~)(x- - xj) W;']'
N

f, + m = - x, mW;•)
j=I

N N

E - Z mj(A.+A,)W'-, - mj[(BSj +BA)W;)

+(C2 ES + C:,) W:-' + (Aj + A,)(X, - xS) W:j'],

•s+ ,=-• E mj (A., + Bj~j + Csr:_ + A., + Bs¢, + Cse,)(f•s - fyi + V, - u)
2 j=

x (W,'- + (x. - xi) w1j)
NNE mi ,A + A. f,•b) j- mj[(Bj~j + B.,¢,)

-= 1 -,-_m 1 (As+A 3 )(iI8 -'b)W;- + Z
j=1

x(f, - vi) Wi + (C3~1 + CE 8 )(f), - oj) W'I

+(Aj + Ad)(v, - vj) W'j + (A3 + A.)(Fi - f,)(X. - x3) WZ],

xs+Ys = ,+V,. (4.6)
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Now allow the equilibrium points (p, [,, ei) to satisfy the original set of equations

(4.1). Therefore, parts of the equations in (4.6) may be removed to obtain

N
os= Z j[ s- )

j=l

J=l

N N

-= mA[(BOj + B, )( D' - F3j)IW'j + (Cj -, + Cer)(i3 - Dj) 14

+(,4A + A.)(vu - vj) Wl47j + (A3 + A.)(Da - 6j)(Xs - Xj) W;•]

.s = -s. (4.7)

This system is now linear in the perturbations so a Fourier analysis may be applied.

For this, let

i: sk iuk isk
1s keisk, v, = ve , Es =e ei, X=X e

where k = 2rAx/ps, it is the wavelength, and i = VE-T-. Uniform spacing is being

required at this point. Imposing this requirement could be delayed until later, but the

notation would become quite ugly. Further, in the next subsection this assumption

is made anyway, so imposing it now does not change the analysis being performing.

So, substitute the above values into the previous equations and divide both sides of

the resulting equations by eisk to obtain

N

jM m3 [(1 - ei(j--a)k) VW-j + (f). - V)(1 - e'(-')k)x

j=1
N
- n [• m(B. + Bj e'(j-sk : + (C, + Cje'(j-)'e'

+(Aj + A,)(1 - ei(J-)k) x W;.]
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j1N.E m, m[(B, + B~e'(J-'k() W-0)16+(, + Cje0')•(0, - j)s 64

+(Aj + A,)(1 - ez(3-'s)) v W;' + (Aj + A.,)( _- fj)(1 -ei(3-)k) W;11

V=v. (4.8)

These equations can be evaluated as is, but it is easier if some notational simplifi-

cations are made. These take advantage of the kernel having compact support and

require the kernel to be even. Let I = j - s, then the sums in equation (4.8) change
fromj = 1, N to I= -oo,oo. Also Wt. = -W'- = -W/ and WY = W' = W['.

Also assume the mass is constant and can be factored out of the sums. Note: this

assumption is not necessary and is justified later on. Substituting into equation (4.8)

yields

= [-mE (1- eik) w; V + m E (f), - e+')(1-ek) W
l=-0 l=-00

v = m E (B. + Bs+1 eilk) wi] ; + m E (C0 + C+ie ilk) W] e
l=-00 l=-0

+ I-r E (A8, + A8+1) (1 - eslk) lx

+ [-2 E (C. + C8,+Ieil)P -" C)14

+ - (A, + A+a+1)(1 - eik) W 1']

+ 2 (A. + A.8+1)(D. - FP8+i)(l - e"') W1'] x

V= . (4.9)
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The following matrix equation can be obtained from the equations above: U = R UT

where U = [ e v ]T and the matrix R contains the terms in the brackets from

equation (4.9). This matrix is similar to the amplification matrix used in numerical

stability. Like numerical stability the eigenvalues of this matrix in dynamic stability

will provide the stability results- therefore, R is referred to as the amplification

matrix in subsequent work.

4.1.2 Smooth Data Analysis. Two important assumptions are made at this

time that are necessary to continue the analysis for smooth data. First, the data is

quite smooth. As long as the support of the kernel (h) is small enough, this is a valid

assumption for a limited period of time. To represent this, the equilibrium points

are taken to be constant inside the support of the kernel plus a small perturbation.

Since each particle already has a perturbation associated with it (0, v, e, and X)

the definition of the perturbations is extended to include the spatial perturbations

as well as the temporal perturbations. The equilibrium points can then be taken

as constant inside the support of the kernel giving fj = fi, f3j = 'b, ij = e for

any j within the support of Wj. Based on the algebraic notation defined earlier in

equation (4.5), Aj = A, Bj = B, and C. = C. This assumption is valid if h is small

enough, no shocks are present, and the data is very smooth. Equation (4.9) is then

simplified to

[= em ')(1-e1k)W]' V

= mB EZ(1 +eilk)W/ q + [iC Z( eilk)W w;

+ -2mA Z ek)w,1]

=[mA E (1 -e ilk) R ]

= V. (4.10)
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In order to simplify the analysis, some further algebraic substitutions are made. Let

G, = m E (1 - e'lk) W;
1=-00

00

G 2 = M E (l+eilk) W!
l= -00

00

G3 = m 1 (1-eilk)Wli.

The amplification matrix, R, is now

0 -1 0 0

R BG2  0 CG2 -2AG 3

0 -AG 1  J 0

0 1 0 0

The eigenvalues of R are determined by solving the characteristic eqnation, det(R -

AI) = 0. For R as given in equation (4.11) the following must be so,%ad

A2 [A2 + ACGIG2 + BGtG 2 + 2AG 3I = 0,

which has solutions: A = 0, 0, ± V-(A C + B) G, G2 - 2A G3 .

The second assumption under this subsection is uniform spacing. This turns

out to be not only useful in simplifying the equations, but based on the assumptions

up to this point, it is necessary. Previously the mass was assumed to be constant

and the field values were locally constant; in particular, p is locally constant. SPH

uses Ax ; ', so Axi must be constant for all j. Using uniform spacing together
p

with an even kernel, G1, G2, G3 may be simplified as

0,0 
00

G, = -im y: sin(lk) W"' = -2im E sin(Ik) Wl'
I=-oo 1=1
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G2 = im 1 sin(lk) W'7 = 21m j sin(lk) V''
1=-01=

GIG 2 = mr2 ( sin(lk) W') = 4m 2 (0 sin(lk) WV)

00 
00

G3 = m E (I-cos(lk))w/' = 2mZ(1-cos(lk))W/'.
=--00=

The eigenvalues of R are now

A = 0, 0, ±+V' (4.12)

where D = D1 + D2  (4.13)

D = 4mp (AC + P5B - 2pA) W0sin(lk) W (4.14)

D2  = 4m (1 A cos(lk)) W1 ". (4.15)

For the analysis to be complete all values of k E O, [7r] must be considered.

However, the k equal to 7r case is going to be concentrated on at this time. There

are two reasons for this. First, for non-linear equations, linearized stability is only

a necessary condition for global stability, not a sufficient condition. In other words,

an instability found in the linearized analysis is sufficient for the actual method to

be unstable. Second, the k = ir case corresponds to the minimum wavelength (or

highest frequency) case. This is often where problems in numerical methods arise.

So, letting k equal 7r, equations (4.14) and (4.15) reduce to

D1 = 0 (4.16)

4m 0W 8m 0
D2 = 2 A 0-(1-(-1)1)Wj' - A E WV/". (4.17)

S 1=1 •- l 1,odd

Based on equation (4.12), R will have a positive real eigenvalue if D is real and D < 0.

In this case, D = D2. Also recall from earlier, A = P, the pressure at the equilibrium

points. Because m and p are always positive, the sign of D is controlled by PW".
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For most of the popular kernels (bell shaped), W" has both positive and negative

parts. Hence, the method could be unstable in either tension or compression. Note:

from conversations with other analysts the problems are more pronounced in tension

(P <0).

Also note, Appendix B looks into the D, term shown in equation (4.14) above in

more detail. In particular, this equation is studied for two equations of state: the

Ideal Gas Law and the Mie-Griineisen. From that analysis the D1 term is found to

usually be non-negative for any wavelength. Hence, this term can help to stabilize

the method for some wavelengths and for others does not help nor hinder stability.

Therefore, efforts concentrated on the D 2 term are most important, as it is the

primary source of the numerical instability in the method.

4.1.3 Reconciliation with Other Analyses. Although the work in this chap-

ter was performed independently, two other groups that performed stability analyses

on SPH (neither is currently available in the published literature). In this subsec-

tion, the results just found in this dissertation are shown to correspond to each of

the other groups results under appropriate simplifications.

1. Petschek and Libersky (PL). See reference (49) for more information. They

assumed P = P(p) only, allowing them to uncouple and discard the energy equation

from the analysis. From equation (4.11) remove the third row and column from R

to obtain
0 -G, 0

RPL = BG2  0 -2AG 3  (4.18)

0 1 0

Note: PL start with slightly different forms of the SPH equations, but they reduce

to the same as the one presented earlier under the assumptions in the analysis. The
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eigenvalues of RPL are: A = 0, ±v/--CD, where D = D1 + D2 and

D, = 4rn2B (& sin(lk)W) = 4m 2BS2  (4.19)

0 0)
D 2 = 2mA ( 2W"'- j2cos(Ik) W1" = 2mA(2Q - 2C). (4.20)

1=1

The notation at the end of equations (4.19) and (4.20) is from the PL paper, showing

that their form and the one in this dissertation match under appropriate assumptions.

2. Swegle, Hicks, and Attaway (SHA). See references (64, 65) for more infor-

mation. As with Petschek and Libersky, Swegle, Hicks and Attaway also assumed

P = P(p) only, allowing them to uncouple and discard the energy equation from the

analysis. Further, they assumed early on in their analysis that density was constant,

allowing them to discard the continuity equation as well. This may sound like they

performed a weak analysis, however, the opposite is true. The analysis is quite thor-

ough and bears reading for those interested in more information on the linearized

stability analysis. From equation (4.11) remove the first and third rows and columns

from R to obtain
RSHA 0 -2AG 3 ]

RsHA 0 -(4.21)
1 0

The eigenvalues of RSHA are: A = +\-/'ZD2, where

4AW 2T 9T 0
D2 =m- -(1 - cos(lk)) W=" = -m--- Z-- (1 - cos(lk))W=" .

P 2= P 21=1

The notation at the end of the equation is from the SHA paper, showing that the

their form and the one from this dissertation match under appropriate assumptions.

Note: their paper uses T ; -P, the stress tensor positive in tension where this paper

uses negative. This explains the sign differences. Their form will also not match this

one exactly, since SHA performed their analysis on a fully discretized problem (using

central time) and this one only does a semi-discrete problem.
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4.1.4 Other Equations. In the previous subsection, the analysis performed

in this dissertation was shown to appear like that performed by other analysts under

appropriate simplifications. In this subsection, the analysis from earlier in the chap-

ter is extended to many different forms of the SPH equations, not just the popular

ones. The forms considered are shown in equations (4.22) - (4.34):

N

= m3 (v• - v.) W'3  (4.22)
j=1

N Mj

Ps = Ps E - (vs - vj) W,3  (4.23)
j=1 P

')sp Si = r s+ ;j( .4

vs = -Zm ± w P (4.24)
\P, 2 S3 W

N' 
P3?86, = -2 E mj W.1i (4.25)

j=1 Pi s
N

Vs = -z m ( -) w j (4.26)

j--1~ j-' W,

j=1N (P

i' = - m 2 -- (, ) W.3  (4.27)
j=31 Psk

N (p
63 = v n3, 2 vs 3 )W~1  (4.28)

N /p
"m" (= E - vi) W .i (4.29)

3=1 i PSp-) (

N

63 = 1:m4 J V-.) v- Vj) W.1 (4.30)
3=1 P3ýj)

1 N (4.31),

6 3  2 Z : MjPP (v -2 2) W'.V)W.1 (4.32)

j=1 83

s= V, (4.33)

.s=V, + C Nm V 3 _VS Wsj-(-4
S = ~ E 0-5(p, + p,)) 3(.4
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Equations (4.22), (4.24), (4.31), and (4.33) make up the system already studied. For

the remainder of the equations the detailed analysis is found in Appendix B. It may

be easily summarized by stating: under the assumptions for smooth data analysis. all

the forms of the SPH equations above reduce to those found in the earlier analysis

(except for form (4.34)). Therefore, the instabilities found in those earlier forms

also are instabilities for these other forms. Hence, it is reasonable to expect that

techniques to resolve the instabilities in one form also are just as universal. More

on form (4.34) in the Techniques for Obtaining Linearized Stability Section (Section

4.2).

4.1.5 Artificial Viscosity/Wall Heating. In many numerical methods, ar-

tificial viscosity and artificial heat conduction (wall heating) are used to handle

physical problems, especially near discontinuities. However, they are also used to

control or assist in stabilizing a method. As discussed earlier, the SPH forms used

for the Euler equations can be unstable regardless of the values of At, h, or Ax.

So it is reasonable to question whether these techniques can stabilize SPH; which is

done here. All of these techniques were first introduced in Chapter III showing that

they vanish as h --+ 0.

Starting with artificial viscosity, only those forms found in the published liter-

ature for SPH are considered. The three forms are attributed to: Monaghan, et al.

(37), Hernquist and Katz (19), and Lattanzio, et al. (28).

1. Monaghan, et al. See equations (3.56)-(3.58). In the SPH momentum and

energy equations replace the . term with 4 + irl where

-a 0.5(c, + c3 );z, + 13 5
o.5(p +p3 )

f h(v.-v .(x-x) (v- - v ). (x-x)< ( 4.6
X$= - xj)1 + .h< (4.36)

0 otherwise
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For stability, the previous analysis (labeled old below) is valid as is with just the

correction terms - 1. mjiI, Wi'3 in the momentum equation and ½ i. m., -,,, ( -

.).,J)" in the energy equation. If rI,, = H5l, + r5. then for the momentum equation,

the linearized correction term is

N N

J=1 3=1

N

=j -m is, Wý+ 7rs1 Wý + f~j(',, -
3=1

N

il,(new) = zk(old) - Emj [r7jW5 '. + l 5lj(y - y,)Wj•] . (4.37)
j=1

For the energy equation, the linearized correction term is

2 m:f (f!- v+) 1j = -2j)

x (w + (xs- - )w'
1N

2: Mj m3 i' oH5 (v -j i)W~ + 7r53j(f), - ýj ~
+rI,,(P' - ij)ws)W + nIsj(X.- - w'-•]

1 N

= 5(new) = (old) + - E mi [rsj(P. - 'C)W;3 + rl'i(P. - Pj)W;3
2j=l

+11si(xs - x .)w'¢] (4.38)

So the 15,j a 7,d j terms need to now be studied. The intermediate steps in deriving

these are left out as they just follow the pre% ious stability analyses. Using p,- as P

at the equilibrium points, then

-a 0.5(c, + cj)p;- + / 9 1 -2

0-5(14 + Pj)
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"aO 0.5(c, + cj)p;, - 32 +1 6

3,r, = I 0.5(0 3+ 1 )2 +(0+)),

r -aO0.5(cs + c.) + 3p3] h(,i3s,- t')
+ 0.5(03 + i0) (-s--i-j)- +qh2] (V.-Vj)

+-o0.5(cs + cj) + 3P;j1 h(f3, -[j)+ 0-503i + 0A) [(.is _ xj)2 + Y/h2

2h(& 3 - Cj )(.t _ tj)2

((,- tj)2 + 7h2)2 -

Under the smooth data analysis, p,- = 0. This causes most of these new terms to

vanish leaving

[I~j =0

Ts, -0 []((-• ;2+-2)] (v. - v)

Therefore, with the smooth data assumptions,

N _ ach( .ts _ ;j)i,,(new) = i, 3(old) - E m,. -_-j)2 -•2) (Vs - vj)W[-_ (4.39)

j=1

.,(new) = i,(old) + 0.

2. Hernquist and Katz. See equations (3.59)-(3.61). In the SPH momentum

and energy equations replace the ý term with - + 1II where

- q_ + q- (4.40)

J'ah~p~c3 IV vj, + Oh'p,(V -v)' f( 8 -v)( 8 -x)<

=Ri< (4.41)
= 0 otherwise

N

s= p3 (V. v), -1 nmj(t, - t,)W'j . (4.42)
j=1
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For stability, the work for this method is the same as for the first few steps of the

Monaghan method leading to equations (4.37) and (4.38). Hence. fl,, and 7r,, must

also be found for this method. Once again, several of the intermediate steps are left

out as they' just follow the previous analyses:

achp + +h4 ocrhp + 3hA0
Ilsj Al P + I Pi

-, f[cichpi + 3hi2j jjh3 IJ4 c'h + 2 3hpi

C, - , Vs - Vk V- Uk -

02 [Pk ks P skj

+ [±ac +-23h uk ] N m [ ;k 0 - V3 - V

-k=1

With the smooth data assumptions, [LA = 0. This causes most of these new terms

once again to vanish leaving

fl:[j = 0

-cach N

S -- 7 : ZMk [V- Vk)W';, + (V3 - Vk)ýw-]
k=1

Therefore, with the smooth data assumptions,

N (-ach• N

i,,(new) = i, 8(old) - khj 2 o2 } m+ [(Vs - Vk)W-kj=1 k,-= I=
+(,+ - Vk) WJ-] w-j (4.43)

;,(new) = i,(old) + 0.
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3. Lattanzio, et al. See equations (3.62)-(3.64). In the SPH momentum and
P 

(

energy equations replace the , term with H(1+ H) where

Iaps = j3ps (4.44)

rh(v, - v1 ) (.x, - xj) if (v, - vj) (x. - xj) < 0
pj= c((x, - x3 )2 + rh 2 ) (445)

0 otherwise.

For stability, the previous analysis is valid as is with correction terms: - Fj m, (• +

)SJ W•3 in the momentum equation and: 1j mj + )HI,(v. - vA)W"j in

the energy equation. If HI = [L. , + rj then for the momentum equation, the

linearized correction term is

N ( -w'N
-• n , + Li I',,W = -Z m,(Aa+BsO,+C e,+Aj+Bjkj+Cej)

.=i (P=P j~l

x(1E + ir3A)(W;-, + (X, - xj)w'•)
N

= zi,(new) = i,(old)[1 + EI,] - y mi(Aj + AS)7rBjW;'j . (4.46)
j=1

For the energy equation, the correction term is

2 E PJ-, + 1) y mi(A. + B.O. + C(e- + AvS- /~. + (, ,,w' --
3j=1

+ Bj, + CAj)(fl,, + 7r,)(iý. - - V,)(W'-j + (X -Xj)w')

1 N
• i,(new) = i,(old)[1 + fllj] + - E mj(Aj + A,)irfj(f)o - .j)W . (4.47)

2j=1

So the 1Hj and r-o terms need to now be studied. The intermediate steps are left

out again as they just follow the previous stability analyses. Using pi- as it at the

equilibrium points, then

fl, = -C1Aej + O;A*j
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= i(v- )r-o +23p~j)(±-Ji h1 [(- +2ý3,i ")(fi8 - Cj)hl
7S, [C((ý3 -i,) + i7h') JV -V')2 + r~h2) J

(< [io - _;-J)2 +±ih2)] X i

With the smooth data assumptions, p- = 0. This causes most of these new terms

to cancel leaving

It'j = 0
U-., =0

= r -= ah(i, - t) 1) (V.,-
[c((t. - ±j)' + i7h2 )

Therefore, with the smooth data assumptions,

i',(new) = i',(old) - 2A m h (vm- v)Wi (4.48)

.,(new) = i,(old) + 0.

4. Summary of artificial viscosity techniques. All three forms studied here

reduce to similar forms under smooth data analysis assumptions. Namely, a term is

added in the momentum equation in the v position which is labeled P&. This gives

a new amplification matrix R

0 -G, 0 0

R BG 2  R, CG 2 -2AG 3
0 -AG 1  0 0

0 1 0 0

The eigenvalues of the new R are: A = 0,0, - R2- (AC + B)G1 G2 - 2AG3 .

Without any more study of P& for each of the methods, some general comments can

be made, remembering that (AC + B)G 1 G2 + 2AG 3 < 0. If R, is real, this does

not stabilize the method. If R, is positive an eigenvalue with a positive real part
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is obtained. If R, is negative it could make the positive real part of the eigenvalue

caused by the 2AG 3 term (instability) smaller, but does not remove it. Alternatively,

if R, is imaginary or complex with a negative real part it could stabilize the method.

However, the only way to get an imaginary part is from the term eA k. But, at the

minimum wavelength, k equals 7r which removes the imaginary part. This implies

that none of these methods help at (or near) the minimum wavelength.

For completeness, the Monaghan and Lattanzio methods result in real R,

terms, which should be negative. The Hernquist and Katz method should result

in R, being complex. However, it is a very complicated form and appears that the

real part can have both positive and negative parts depending on particle position

and kernel. These are shown below

Monaghan: R, = - c)chm (±c-±.,)2 + e7h2)Wil
Pi 1=-00

ach (N -- ~ ilk + i-~kh

Hernquist: R, = - .m F[Y j(1 - e'( )W e. (e- e eJ] W=

Lattanzio: R, = - E e'c i=-00 (Gt. - tcJ)2 + 0l2)W.

5. Wall Heating. As described in Chapter III, the wall heating term, H is

added to the energy equation outside the sums. See equations (3.65)-(3.67). So the

stability terms have the form

i,(new) = i,(old) + Hg

where

N

HS = 1 m 1-j (4.50)
j=l

(q, + qj) (e. - ej) (x. - x3 )
- o.5(p. + p3) ((x. - X) 2 + 77h2) W (4.51)

qi = hgic + h2g2 (1V• VI, - V . vi) • (4.52)
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-X2 \ ix, - 2 ¾)4

I 1 (0. +~

Ps +Pj (= i+0 0. ,-p 3  (0. j )~,)

So for Hj obtain

=t 2 (q, + qj) (~+~ + 6- 6-3 )

= 2 (q. + qi) [ý ij (~' - -~ + )(xlx)
1(3- )2)( (p ýi -- S

+~~j ( X - X__ _ _ _ _ _ _ _ _ _ _

+ A (12 ~ ) (6 3 j v ; + ) )3 ( Y

(03 + + -j

1ý -

+ (2 + 2(X'- 
- . ei-,)j

2(.+ qj (xs (- +iW~ .j (453)

The following is needed for the q terms:

1 N_
V).- Ernj(v.- iv)(X

Ps4-=0



N N J) 03 R', 1 - ,

P- El)( (4.54)

Substitute equation (4.54) in equation (4.53) for q, then update the Hanalysis to

obtain

H(3  2 2heg,+(i+ (-h2
9  - i

~~~ + M ][, P E)W -, (f__
n=1 \ ij n .=1

, ~ (~ - ej)(0+

(E.' - j) (X - Xj)w'• + ( - ,)(xo -x)w;

+ - t( X Sj)I

[ 2(E.--ij) ] N ()s__- )_ 1=(V., V) Win+ +~ _ W.'j m1  [ 2('0 ~ ~~Win - P-Ls-
(0.35 - - )

7-&) (Xs Xn)w"

Applying the smooth data assumptions, most terms drop out, leaving

H/j = 2(2hgic) ( I ) (E. - 6,)w'j
N Ic(_ _ -C

so H. = 2hgc gt - j) Wil

-2hgicm 1_-_____

A .f,-((1~i, ) )WI]C

Apply uniform spacing and label the result RH to use in the amplification matrix

RH = [4hglc (, 1 ( (4.55)
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The RH term is added in the energy equation in the e position giving a new ampli-

fication matrix R
0 -G, 0 0

R = BG2  0 CG2 -2AG 3  (4.56)

0 -AGI RH 0

0 1 0 0

To find the eigenvalues of the new R, a 4th degree polynomial equation must be

solved. The characteristic equation is

A [A3 + A2 (-RH) + A((AC + B)G1 G2 + 2AG 3 ) - (BRHGIG2 + 2AR1 1 G3 )] = 0.

This requires finding the roots of a cubic equation. Using Mathematica the roots

were found to be extremely complicated. However, upon investigating this equation

further, for the minimum wavelength case, the PW" condition is still sufficient to

cause an instability. However, due to the complicated nature of the eigenvalues, no

additional general statements can be made about the wall heating term.

4.2 Techniques for Obtaining Linear Stability

In the previous section several commonly used implementations of SPH for

the Euler equations were shown to have an instability arise. The key element is a

term whose sign is controlled by PW". This term needs to be always non-negative

or else the amplification matrix cannot be guaranteed to have a non-positive real

eigenvalue. In this section, four methods are introduced that can be applied to

control the stability. They consist of (1) using concave up or concave down kernels,

(2) adding a constant to the pressure (two variations), (3) using a pressure difference

form (two variations), (4) making a particle motion correction.

4.2.1 Technique I - Concave Up/Down Kernels. From earlier, the eigen-

values of the amplification matrix, R, were: A = 0, 0, ±:V'-'D, where D = D, + D2
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and

D,= 4m (2 C + p - 2j p ) sin(lk) W' 2  (4.57)

Dm= 4m
D2= -2A -(1-cos(lk))W1 ". (4.58)

P =1

At minimum wavelength, k equals r, D, = 0 and D2 cx AW". Recall that A =

P(p, ý). Therefore

if P, < 0 Vs then choose W such that W" < 0

if P, > 0 Vs then choose W such that W" > 0.

These requirements will ensure stability, at least at minimum wavelengths. For the

second derivative of the kernel to be of one sign, use either concave down kernels

(referred to in Chapter VI as parabolic shaped) for W" < 0 or concave up kernels

(referred to in Chapter VI as hyperbolic shaped) for W" > 0. It is possible to use

other shaped kernels (such as bell shaped), but only if supported particles are not

too extreme (too close or too far away) and particle motion is small. If this later case

is used, a check in the solution algorithm should be included to stop when unstable

conditions arise.

In Chapter VI, bell shaped kernels are shown to give better results and these

other shapes poorer. So although this technique works for problems with constant

signed pressure, it trades stability for accuracy. If a large number of particles are

used (small h and small Ax), this is a reasonable trade. Since, the stability should

allow the algorithm to run longer and probably converge to an actual solution; and

accuracy is improved with more particles. However, if particles are sparsely spaced,

the inaccuracies of the kernel used in this technique probably outweigh the stabilizing

effects and other techniques should be sought.
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Hence the advantages of this method are that it requires no change to the equations,

maintains conservation, and stabilizes the method. The disadvantages are that it

can only be applied for problems with constant signed pressure and a new (possibly

less accurate) kernel must be used.

4.2.2 Technique 2 - Add a Constant to the Pressure in the Momentum Equa-

tion. In the momentum equation, if a constant is added to the pressure term.

the effect is to add a zero term plus O(h2 ) to the final SPH momentum equations as

shown below:

D VP = -V (4.59)

P - P+ Po (4.60)

Dv 1 V(P+Po) = -- VP 1 VP0  = -- VP. (4.61)
-t p P P P

So adding a constant, Po, results in no change to the actual differential equation.

Note: P, can also be a function of time only and not change these results; this might

be more advantageous in actual implementations. As with equation (4.59), the chain

rule may be applied to the P, term to obtain

Dvr

Label the additional term in the momentum equation as F, and obtain

F = VQ)(L-) VP = 0

F, • - ypmj 2+ 'i ,WJ = -Po>mJ 2• 2+ V.Ws. (4.62)
PS)j=1 (Pi PS)

So adding F, to the SPH momentum equation is equivalent to adding O+ O(h 2, hzAx).

Further for symmetric kernels
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~~N NN1 1
m, F - -P. m.Z mm -L + V. W'j = 0.

s=1 3=1 j=1 P P

Hence. for symmetric kernels, F, does not change the momentum conservation. From

earlier in stability, use equation (4.10) for the momentum equation

v 0 (1+ +ilk)W ] w p + [iC (I+ e ilk)wit] 6

+ f-2m A - eilk) X. (4.63)
l=-00•

Consider F, perturbed, removing the constant term

N N 1 11)P.- EP • m + (Will + (X- xj)W ;)= (fij + oj)2 (p.+ s)

j=l "+

j=1 Pj Ps +=1 p 2Wp3

F3  = [2P m3 (4 -e + i(j-s)k~ W']
[ _1 ) P/

+ [Po j (m + _L) - ei(-_)k)WII x.

Under locally smooth assumptions, the following terms are added to the momentum

equation in the amplification matrix (4.63)

-2 . 00P il) W

Earlier in equations (4.12)-(4.13) the eigenvalues of the amplification matrix, R, were

shown as

A(old) = O, 0, -D - Db ,

where D1 and D2 are gioen in equations (4.14) and (4.15). Now using this stabilizing

technique, the eigenvalues of R have the same form as before, but with D1 and D2
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defined as

= 4 (AC + 2 - 2(,(A + P.)) 00sin(lk) WI' (4.64)

4m 00
D 2 = -T-(A+Po) Z(1-cos(/k))1W'7. (4.65)

1=1

The key change is the A + P0 term in D2 where only A was before. This allows for

two choices:

1. P0, >_ 0. Choose P, _ -min,(A,,0) in order to keep the pressure term always

positive. However, this then requires the use of a concave up kernel (hyperbolic

shaped) so that W" > 0. This ensures that D2 >_ 0. One side effect is that

D1 is made more negative (more unstable). This should not be a problem, but

might deserve monitoring.

2. P0 < 0. Choose P0 < -max(,(A, 0) in order to keep the pressure term al-

ways negative. However, this then requires the use of a concave down kernel

(parabolic shaped) so that W" < 0. This ensures that D2 2> 0. In addition a

good side effect is that D1 is made more positive (more stable).

So the advantages of this method are that it allows continued use of symmetric

equations, maintains conservation, can be applied for problems with pressure of

either sign, and stabilizes the method. The disadvantage is that a new (possibly less

accurate) kernel must be used.

4.2.3 Technique 2a - Add a Constant to the Pressure in the Energy Equation.

In Technique 2, a constant is added to the pressure term in the momentum equation.

A similar change can be made to the energy equation. The reasons to do this are

to keep the momentum and energy equations in agreement with one another and to

help the D1 term if needed. However, it is more difficult to see that this is consistent

since the pressure term does not occur inside a derivative in the differential equation.

So instead of deriving the SPH energy equation directly from the internal energy

4-26



differential equation, derive the SPH form from the total energy equation and the

SPH momentum equation. Define

P5 P3

2 2PS P3

P0a33  = s+

Dv, N

= - Em 3 a,j V. W'j.
Dt1

Starting with the total energy conservation form

N 1

E (m' e + -m'i0) = constant.
2 2

kr ~ e m2)] = N De. D6
Dt[~ 3 5  2 FZ(M' ~ a~~

N N
= -'' m.,m 3 ~i.VW~j (4.66)

s=1 j=1

N N

= Z-•Emjms&j, ?J~j\73 4

j=1 j=1

N N

= E'Z'Z m jm &.'i 3(-V-W8j). (4.67)
-=1 j=l

This last step assumes an even kernel. Now average equations (4.66) and (4.67) to

obtain
N De, 1 N N

E m3 - = - E m 3 E m j &.j ( -iV).VW.. (4.68)
S=1 Dt 2 3=1 j=1

So now define
De. 1 N
Dt -- 2 m W1( - 6j)i-V-,VW' 1 . (4.69)

2j=1

For stability, the D 2 term is the same as in Technique 2; but the D1 term is different.

In Technique 2, a term with -20P, is added. In this addition to Technique 2, a term
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with OP0 is added. So putting Technique 2 and Technique 2a together, the D, term

is redefined as

Di(new) = Di(old) + ' (C - 2,i GG,
p4

This new term is usually negative for the two EOS studied, making D1 more stable.

So the advantages of this method are that it allows continued use of symmetric

equations, maintains conservation, can be applied for problems with pressure of

either sign, keeps the energy and momentum equations in agreement, and stabilizes

the method. The disadvantage is that a new (possibly less accurate) kernel must be

used.

4.2.4 Technique 3 - A Pressure Difference Form in the Momentum Equation.

In the momentum equation, add a term that has pressure times the gradient of

a constant. This results in adding zero plus O(h 2) to the final SPH momentum

equations as shown below

Dv1(=V (4.70)
(') - WpV

Dv-(P 2PDt - - 2 p + - .Vi (4.71)

Label this additional term in the momentum equation as F, and obtain

F =2P v1 = 0
P

F3 • -Zm (,) V3 W, . (4.72)
j=1 (P.P

So adding F. to the SPH momentum equation is equivalent to adding 0+O(h2 , hAx).

This form cannot be guaranteed to exactly conserve momentum. However, the sta-

bility analysis is performed under smooth data assumptions. In particular, if the
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pressure varies only slightly within the support of the kernel, the loss of conservation

should be on the same order as the method itself. From earlier for stability, using

equation (4.10) for the momentum equation

V mi Z( .e1k)W/ w p + [iC (+euilk)w;] E

IM

+ -2m.4 (1 -eak)W/j 11 (4.73)

Consider F, perturbed, removing the constant term

N" - _2 ( .4, + [ o + 0 .6")

F• = pp • )](P ± X

F, m ( + w '-.
-- P j +0 + pI

[N (2A. 2A. 2A 6,

F, [ Em - -2 ' +

- -W'-Y"- c±! Z - m7 2 A(1 -)W .

Under locally smooth assumptions, the following terms are added to the momentum

equation in the amplification matrix (4.73)

--mZ(I+ + k)Wm W_ [--I- -- 0--0]'t

+ [ rPS Z(1-e PSW;] x3

2C-• W- 2A

From section 4.1, in which a stabilizing technique was not used, the eigenvalues of

the amplification matrix, R, were
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A(old) = O,O, -D -D 2 ,

where D, and D2 are given in equations (4.14) and (4.15). Now using this stabilizing

technique. the eigenvalues of R have the same form as before, but with D, and D2

defined as

D, = 4m2 (AC + j3) s(in(lk) Wl' (4.74)

D2 = 0. (4.75)

The key change is that the troublesome D 2 term is removed completely. The D,

term also changed, but should still not be a problem. See Appendix B.2 for a

further discussion of the D1 term.

So the advantages of this method are that it allows continued use of symmetric equa-

tions, continued use of tlý-- same kernel, can be applied for problems with pressure of

either sign (easily). and stabilizes the method. The disadvantage is that momentum

conservation may be lost.

4.2.5 iechnique 3a - A Pressure Difference Form in the Energy Equation.

As was done with Technique 2, a change similar to Technique 3 can be added

to the energy equation. The reasons to do this are to keep the momentum and-

energy equations in agreement with one another and to help the D1 term if needed.

However, it is more difficult to see that this is consistent since the pressure term

does not occur inside a derivative in the differential equation. So instead of deriving

the SPH energy equation from the internal energy differential equation, derive the

SPH form from the total energy equation and the SPH momentum equation as was

done in Technique 2a. Define

PI P

0S32+ 2

PS PJ
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DtN
IsT = - E71 MI~ 'SI4VS/WSD t j=1

Starting with the total energy conservation form

N1

S(mroe, + m )= constant
2

Dt + m=)J-=1 + M.

N DN N N

3=1 I1s~
N N

- _._ m3 m3 .jS ,.VVWj (4.76)
s=1 j=1

N N

- ZZ mims3 js 6 Vj'Wis
j---1 3=l

N N

I ZZ msm J&joi.(-VV, Wo) . (4.77)
--1 j=1

Therefore, average equations (4.76) and (4.77) to obtain

N Des 1 N N
Z .m s-b = - _ , m j S j s 5 s j ' s

=1= j=1

N [ 1 N

- , m, 8 Oa V j- "~

-I2 Nlm P. V, -- Pi 6J .Vs Ws (4.78)

j=1 Ps Pj J

So define

Des I 1 N N 1p1, ) - VWj.(.9
D 2- E m3 as3(iJ- W- _m1 P,-P . (4.79)

j=1 j=1 Pap.
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This implies the additional term, F, for the energy equation is

FN = - 8,WW 3 . (4.80)
F. E=m PS P-1 V n(.0

For stability of this method, consider F, perturbed, with the constant term removed

Fý, E M (A '. +B8 ,C 3 )+ V.) - (A 1 + f 3j + C3je)(V5 + V,)1
j=, [ (f, + OM(I + .)

X(w' + (Xs - xw')-)

psp (As °-s J ss--•)

-=1

+ ( As•s -iI ± ( ) + W)j

+ [,&. --- (X. - x i)W;,j)

N (F[AI5 - rj),+O'i)O A. .- A,13j -p.Bv.]

A. v.' - Ajv W , 
2 W5 c -O fj-

N N~4-A~

3=1 m3  ''- AWI

Under locally smooth assumptions, most of the terms vanish and only the following

term needs to be added to the energy equation in the amplification matrix

m • :e"k)W,' €

With the addition of this term, the characteristic equation becomes

_ =
A A3-i + _ (-) (f&) = o,
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As with the wall heating term this equation does not yield simple eigenvalues. But,

at minimum wavelength G1 = 0 so the eigenvalues are all zero. For other than the

minimum wavelength case, this form of the equations does not permit any general

comments.

So the advantages of this method are that it allows continued use of symmetric

equations, keeps energy and momentum equations in agreement, and can be applied

for problems with pressure of either sign. The disadvantages are that conservation

may be lost and with the complicated eigenvalues stability is difficult to determine

for certain. In fact, since the technique can only guarantee non-positive real parts of

the eigenvalues for the minimum wavelength, it would be more appropriate to refer

to this as less unstable or conditionally stable.

4.2.6 Technique 4 - Particle Motion Correction. As noted earlier in this

chapter, and detailed in Appendix B, the following form of the particle motion

equation can have a stabilizing effect

N vj - v,
= v, + C 1 mj 0.5 ( -•-p+)3 W) j = v,-fAv. (4.81)

This equation was originally proposed by Monaghan (41, 43) to solve a prob-

lem with streaming; where particles from one material unphysically penetrate into

another in a collision. Although artificial viscosity helped the situation, it did not

remove it in all cases. Similarly, artificial viscosity can make the eigenvalues of the

amplification matrix smaller, but cannot stabilize the method. Further, this form

was proposed for streaming because the velocity field may not be single-valued in

SPH and using the usual i = v equation can result in incorrect particle movement.

This last notion also applies in the stability case. The velocity is not properly cal-

culated (in a stability sense) causing the particle movement to be incorrect unless a

correction term is added.
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From the material in Appendix B leading up to equations (B.15) and (B.16), the

eigenvalues of amplification matrix using this technique are A = 0, 0, ±VC-T--D, where

D = D± + D2 and

= 4m2 (AC + p2 B3 - 2A) sin(lk) WV') (4.82)

D2 = -4 ( -cos(1k))Wu" I- E- •--( cos(1k))W] (4.83)D=2 =i A=[

At minimum wavelength, k equals ir, so D, = 0 and D2 ox AW"(1 - 2f). The

stability analysis was already performed in Appendix B, but three questions remain:

Is this correction consistent, conservative, and how big does f have to be to ensure

stability?

1. Consistency. Use the following:

2 2V3sV us-, " +2)
•"- = ° -(V3 -•'jV" + V7 ° ")=X~jV' - -V, + O(h)

2av 3 2

2 _ 2 2 1 X'_ (p' 2 )

S + pi Ij + (2p, - xjp' =+ = PS 2  p2),PS9 +.. (PS, -X~jp, SO./, p

to obtain

0.__S _) = (po) °, + (,/k• - -+O(h2).

Using the information above, the additional term becomes

A N ( VNj N xjW)
m k0.5(p., + pi) W) = m p 3

N= \/9 p. 2

_ P, P.S

Em ()4- 34
2 3=

j=1 PS 4-)4



Investigating the sums in the above equation yields

N N N

S, mx 83W,j = x. E mjW., - 5 m.Wxi o W X < P, > - < Xp, Ps> 2Z 0

N N N N

I~~ 3j3E5jj x mj R'4 , - 2x, 5 mxW 3 , + E mjX2W.,1
J l=1 j1 11=1

,' p x<p> -2x, < xsp > + < x. 0.

Therefore, the Av (additional term) term is equal to zero within the order of the

method. This implies it is a consistent technique.

2. Conservation. For conservation of momentum note

N N N

M i. = (V8 -EAV) =. Vm,?
s--1 a--1 s~l

=1s=

So adding the cAv term to the SPH particle motion equation is equivalent to adding

0 + O(h2 , hAx) and for symmetric kernels maintains momentum conservation.

3. Magnitude of the f Factor. Concentrating on the troublesome D 2 term, f

needs to be large enough so that 2AG 3(1 - E-G-) > 0. By definition, p and Gs are
p

non-negative. So, consider two cases:

a. PW" > 0. This implies 2AG 3 > 0. Then f needs to be small, in order that

1 - e-_ > 0. Although more analysis can be performed, the easiest solution is just

to let c be zero in this case.

b. PW" < 0. This implies 2AG 3 < 0. Then f needs to be large enough for

1 - f < 0 to hold. For the - factor note that
p

Gs_ 2m~
S (•( - cos(lk)) Wi.
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At minimum wavelength that term approaches 2 as Ax , 0 and at k = j, it

approaches I as Ax - 0. This implies for the lower wavelengths, c can be quite

reasonable, around I as long as Ax is sufficiently small. In fact, based on some

tests for the popular B-Spline kernel, for Ax < 1.4h (rather large), a value for ' of

5 stabilizes the minimum wavelengths. If the particles are guaranteed to be more

tightly spaced, the value for f can decrease, approaching 0.5 in the limit. To be able

to stabilize wavelengths up to k = 1, double the value selected for c. Considering
2'

the small values often used for h, these values for f are still reasonable. A problem

with this rtchnique is that as particle spacing becomes more sparse, f needs to be

increased. However, for spacing much larger than Ax = h, the accuracy becomes

quite poor as shown in Chapter VI. Hence, it seems reasonable not to worry about

stabilizing the method when it is highly inaccurate.

A more significant concern with this method is that it does not work for all wave-

lengths. This is because as k --+ 0, G5 -- 0. And although it is not a problem when

k is exactly zero (since G3 is also zero), it is for all other small values of k.

So the advantages of this method are that it allows continued use of symmetric

equations, keeps energy and momentum equations in agreement, can be applied for

problems with pressure of either sign, and maintains conservation. The disadvantage

is that it only works for lower wavelengths. Since this removes the instability from

higher frequencies (lower wavelengths), this might be more appropriately referred

to as a high frequency filter. However, that does not indicate the stability process.

So using the terms less unstable or conditionally stable from the previous technique

might be more appropriate.

4.2.7 Some Computational Results. Based on the work in this section and

Chapter VI, I feel that Technique 3a - A Pressure Difference Form and Technique

4 - Particle Motion Correction are the best possibilities. The first few techniques

are still valid, but in Chapter VI the concave up kernels (hyperbolic shaped) and
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concave down kernels (parabolic shaped) are shown to be not nearly as accurate as

bell shaped kernels, so those will not be considered at this time.

In this subsection a one dimensional stability test is performed, similar to

one proposed by Swegle (63) (the concept is the same as Swegle's, but some of

the parameter settings are different). The initial setup is a line of 2300 particles

contained in the interval [ - 90,140 1 with h = 0.15 and Ax = 2h/3. The material

chosen is Aluminum that has an ambient density of 2.71 gm/cc. All particles are

given the following initial settings: po = 2.57, eo = I x 10', v. = 0.0. The initial

density is about 95% of the ambient density, implying the material is in tension.

Using the Mie - Grdineisen equation of state the initial pressure is -.0425 everywhere.

Then one particle in the middle of the line is perturbed by giving it an initial velocity

of 10-s; all other values of the perturbed particle are unchanged. Other important

settings include using the W-4 B-Spline kernel, using central time, a CFL factor

(CCFL) of 0.3, and time step calculated by

At = CCFL/h + c

where c, is the speed of sound.

Without any artificial damping terms, the perturbation should cause a wave to

travel in both directions while the velocity of the perturbed particle to decrease (in

absolute value) with time. A baseline test case is performed using the settings above

and a standard SPH formulation. The calculation is then repeated using Techniques

3a and 4. Plots of the pressure and velocity for each of the calculations at 25 Asec

are shown below in Figures 4.1-4.3.

In the baseline, the velocity perturbation obviously is seen not to decrease with

time, but grown tremendously. Further, the perturbation has also caused a growth

in pressure. Upon applying either of the two stability enhancements the growth is

removed. In both, the growth is completely eliminated (at least to plotting accuracy)
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Pressure vs. X
"*10.2 Calculation

-2 -Max Pressure = -0.018887

Min Pressure = -0.050643

3 NP =2300

Time = 25.00

0. Iter= 418-4"

-5 _____ ___ I_____ ____ I____ ____ ___ Baseline

10 20 30 40
X-Coordinates

Velocity vs. X

Calculation
Max Velocity = 0.016903

- Min Velocity =-0.015866

NP = 2300

"Time = 25.00o 0.0-
> Iter= 418

-0.01-

I I =I Baseline
10 20 30 40

X-Coordinates

Figure 4.1 Baseline Stability Results
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Pressure vs. X
*10=2 Calculation

-2- Max Pressure = -0.042528

Min Pressure = -0.042531

-3 
NP = 2300

Time =25.00

a.. Iter = 400
-4-

I 5I I , I I Tech_3a
10 20 30 40

X-Coordinates

Velocity vs. X

Calculation
Max Velocity = 0.000001

Min Velocity = -0.0000010.01-

NP = 2300

"c3 _Time = 25.00.o 0.0
> Iter = 400

-0.01-

I I I I I - I I I I I I TI Iech -3a
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X-Coordinates

Figure 4.2 Technique 3a Stability Results
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Pressure vs. X
"*10,2 Calculation

-2- Max Pressure = -0.042519

Min Pressure = -0.042541

NP = 2300-3-

Time =25.00
'/)

a. Iter = 401

-5-

I I I I I ' ' I Tech_4
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Velocity vs. X
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Max Velocity = 0.000002

Min Velocity = -0.000002
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-0.01

I , I , I , I ,I I Tech _4
10 20 30 40

X-Coordinates

Figure 4.3 Technique 4 Stability Results
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for velocity. In Technique 4, there is a little more noise (especially in pressure), but

it is not even to the accuracy of the plot. A comparison of the velocities over time

is shown in Figure 4.4

Log(Abs~v)ý Velocity for Perturbed Particle

Time
5 10 15 20 25

-7.5 Baseline

-10

-12.5
"ith Stability Corrections

-15

-17.5

-20

Figure 4.4 Velocity Stability Comparisons

The baseline has an exponential growth of velocity (plotting is on a log scale), while

the others slowly decrease over time. This shows the unstable nature of the baseline

and stabilizing nature of the techniques 3a and 4. Also note that both techniques

maintained conservation of volume, momentum, and energy exactly. This should

help to alleviate some of the concerns over Technique 3a maintaining conservation.

In addition to the tests shown here, tests were performed with spacing of

Ax = h and initial perturbation velocities of 10-' and 10-8. The results for all

the runs were similar. The amount of growth and the time scales were somewhat

different, but the bottom line is the baseline grows exponentially while the stabilizing

techniques do not.
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4.3 Total Variation Analysis

In this section the concept of total variation stability is introduced. Much of

the analysis in this chapter so far is based on concepts dealing with linear equations.

This allows many simplifications and makes the analysis easier. However, the linear

approximation is valid for non-linear problems locally. That is. as long as perturba-

tions are generally small in a given space and time domain around any point, the

analysis holds. If these assumptions do not hold, or that is too restrictive, other

definitions of stability must be found. One such definition is total variation stability.

A good summary for this as applied in finite differences may be found in LeVeque

(32).

The approach taken in this section is to develop two total variation stable

versions of SPH starting from the basic one dimensional wave equation. In particular,

the versions developed here are monotone schemes. A comment is then made as

to how this concept can be generalized for use a general conservation equation.

However, first a few notes on this relatively new concept.

The basic idea in total variation stability is to bound the total variation of

the numerical solution. Conceptually, that means to bound the amount that errors

can grow, a basic tenet of stability. For this reason, total variation stability and

total variation bounded (TVB) are used interchangeably. There are two equivalent

definitions of total variation (at least)

N

TV(u) = I u(x,+i) - u(x,) (4.84)
i=1

TV(u) = Lu'(x)I dx. (4.85)

The first definition is for discrete functions and the second for continuous functions.

These ideas can also be extended to functions of both space and time as
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TVT(u) = limsup-] f u(zE, t) - u(xt) dxdt
f-0o f.

+ limsup1 fT tu(x,t+c)-u(x,t)ldxdt. (4.86)

A subset of TVB methods known as total variation diminishing (TVD) methods

were actually developed first. They are also more prevalent in the literature. TVD

methods were introduced about 12 years ago by Harten (17). A numerical scheme.

un" = 71-(u!), is known as TVD if

TV( un+,) <_ TV( un).

Other good sources on TVD methods are: Harten (18), LeVeque and Goodman (31),

Osher and Chakravarthy (48), and Shu (54). In addition to TVD there are several

other categories of TVB methods, each one a subset of the previous ending with

monotone methods. Monotone methods are quite smooth and stable, but as shown

by Harten, et al. (16) they are only first order accurate. So there is a stability versus

accuracy concern for monotone methods.

As a way of introducing the total variation ideas to SPH, two monotone meth-

ods are developed in this dissertation. In the hierarchy given by LeVeque, these

methods will also be 11 contracting, TVD, and TVB. The two SPH monotone meth-

ods being proposed are: the Lax-Friedrichs and a General monotone SPH.

4.3.1 Lax-Friedrichs. This notion is derived fully in Chapter VII, so only

the formula will be given at this time. For the one dimensional wave equation

Ut + au., = 0,

N N
u+ = E AxiuýWu - awAt E A W',. (4.87)

j=1 j==
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Note: 1V and IVV do not have to be the same kernel. To show this method is

monotone, let JH(u,) be the right hand side of equation (4.87) and then show

dhu > 0 V k, i, u'

For this method
aiTt
- AXk WAk - aAt AXk 11"W'.du•

WVhen k = i, the results are

--= Ax, W,, - aAt Axi W,' > 0 ,

since IR"' is taken as 0 (at least in all the kernels in Chapter VI) and W, is positive.

Also for k = j Z and W > 0,

u Ax, (Wij - aAt W) =Axj W,, 1 - aAtw.

IVj B az jt
if W- < -then aAt ' < B

I4j - h I W h

where B is a constant to be discussed at the end of this section. So, choose At < haB

to obtain

> 0.

Hence, the SPH Lax-Friedrichs method (4.87) is monotone for the wave equation.

The restriction on At is similar to the famous Courant-Friedrichs-Lewy (CFL) con-

dition. It specifies the values At can take not only to be monotone, but to en-

sure non-physical particle movement does not occur (such as particles crossing in

one dimension). This result can be extended to the general conservation equation

Ut + [f(u)]. = 0 by letting a(u) = f'(u) and rewriting the equation as ut+a(u) u, = 0.

In this case, At must be chosen such that Gh -- < I to obtain the monotone results.
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Although the SPH Lax-Friedrichs method given above was shown to be mono-

tone, in SPH a difference form of the SPH derivative is often used. So now a similar

Lax-Friedrichs form can be derived for these methods. Let u be the function to be

solved for and i, be some other differentiable function then

(vu)' - vu' + v' u

so U --[uv' - (vu )']
V

N

then u'(xi) - AXj -I (u, - uj) W'.
j=1 1i

Note that v can be a constant function, in which case this reduces to simply adding

zero to u', to within the order of the method. For the field term use

1 N 1j
Vi j=1 1i

uUxi N V-U (Xi) "•- < V3 >i " : AE m -- 'J ui W_'jj
Vi j=1 Vi

N Vj ( Ui"+- •j ) V
so u(xj) N: A ~ (ut i\

j=l Vi 2

Then the Lax-Friedrichs type form for this SPH formulation is

N I Un + NU v + N V.

u. = + +: Axj-(0 - 0) '. (4.88)
j=1 j= Vi 3

Let 7"(ui) be the right hand side of equation (4.88) and investigate its monotonicity:

AX NO• A, W" + E A\r, !L- + a At W!~
9u? 2 vi

( u90 2 vi
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= 0 is assumed to obtain the above equations. For this case choose At < -A- to

obtain
M > 0.

This new requirement on At is half the original requirement (CFL number). Other

Lax-Friedrichs type formulations are possible in SPH, but they are not developed in

this dissertation. Instead, attention will now be given to the next type of monotone

method.

4.3.2 General Monotone SPH Scheme. In this scheme zero is added, to

within the order of the method, to an SPH formula to obtain a monotone method.

Start with the one dimensional wave equation again, ut + au, = 0. Use the following

forward time, SPH (in difference form) space

N

u!+' = u, + a At L, X• (u0 - U,) W. (4.89)
j=1

Also use the following approximations

N

u(X1 ) < U j;- AjU i
j='

N

u(xi) ui < 1 >i : E A1XU 1 W1 3
j=1

N

so 0 E -Z_,A(ui -u3 ) Wij . (4.90)
j=1

Add equation (4.90) to equation (4.89), noting that W and W do not have to be the

same kernel, to obtain the new scheme

N N
u n+1 l X U U)Wl (.1

ui U( - 0 Wx3(u'-u•)Wij + aAt•-Az(u'-u')W.. (4.91)
j=1 j=1
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Let 1"(u,) be the right hand side of equation (4.91) and show that it is monotone

ON N N

i~u!' 1: Ax, Wi + a.ŽAtZ1: Aj W' + Axi
I=1 J=1

The first sum is approximately 1 and is exactly 1 as h, Ax --* 0. So 1 minus this

sum is an O(h2 , hAx) term. The second sum is approximately 0 and is exactly

zero as h, Ax -+ 0 or if the particles are uniformly spaced and the kernel is even.

This leaves the W,, term which is positive and should be larger than the O(h 2 , hAx)

terms. The second partial derivative term (for j 0 i) is the same as for the original

Lax-Friedrichs method

-= x (Wj - aAt Wj).

So this term will be positive under the same CFL condition given earlier, namely

aAt < I

4.3.3 Kernels Ratio. A bound (B) on the ratio of the two kernels was used

several times in this section and is now addressed in more detail here. Writing the

kernel as W(x, h) = IK(f), the desired bound is

K'(u) < B. (4.92)
Kg(n) -

A natural question to ask is what happens if the two kernels are taken to be

the same. For the most part the ratio provides a good bound, but as u --+ 1ch, the

denominator will approach zero since the kernel is compactly supported. Even if the

derivative also has compact support, using L'H6pital's Rule shows that that B --+ c0.

This will cause At -. 0 to ensure monotonicity. However, from an implementation

point of view, if particle separation can be ensured not to cause a particle to be close

to the edge of the support, the same kernel can be used.
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A better idea is to use two different kernels. In Chapter VI, 18 kernels are

studied, several of which are quite good and should give similar results. Since the

denominator approaches zero near the support of k', K' needs to have compact

support. In addition, Ak' should not be zero near Kch. This can be generalized

by requiring K to have compact support one derivative level higher than k. To

demonstrate this idea, use the B-Spline and Quartic-1 kernels for K and the Q-

Gaussian and T-Gaussian kernels for A'. The definition of each of these kernels is

found in Table 6.2 in Chapter VI. Define B(u) = -K'(u)/k(u) and consider only

u E [0, 2]. The results are shown in Table 4.1.

K K IB(2) [ B=maxB Iuatmax[1/B
Quartic-1 Q-Gaussian 0.0 7.272706 1.735403 0.1375
Quartic-1 T-Gaussian 0.0 3.449569 1.567588 0.289891
B-Spline Q-Gaussian 0.0 4.541915 1.675131 0.220171
B-Spline T-Gaussian 0.0 2.493523 1.325998 0.401039

Table 4.1 Examples of Kernels Ratio

As shown in the table, the ratio of two different kernels is well defined at all values.

The last column (1/B) gives the CFL number. Note that for these examples 1/B is

less than 1; but this number is not too low, especially for the last example.

4.4 Summary

The material in this chapter addressed the stability question from two sides.

First, the linearized analysis addressed the question of the stability of current SPH

schemes. Upon finding an unstable condition, four techniques were proposed to

resolve that difficulty. Actually, techniques 1, 2, 2a, and 3 are all stabilizing without

any restriction on the wavelength while techniques 3a and 4 are only conditionally

stable. Second, the total variation analysis addressed the question of what is a highly

stable SPH scheme. The best SPH scheme probably lies somewhere between the two.
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The linearized analysis does not take the non-linearities of the equations into

account and tries to minimize the changes necessary to obtain stability. This is

because stability is often viewed as the opposite of accuracy, which is frequently

not true. Also, because the current versions of SPH apparently do not have serious

difficulties due to stability, only mii.or changes might be needed. This approach

'hould assist the SPH users immediately. The cost of this approach is not considering

mnajor changes that might allow for better stability while maintaining accuracy (and

conservation).

The total variation approach provides the opposite extreme. New schemes were

developed, and these traded accuracy for significantly improved stability. Although

these new schemes will probably not be used by themselves they are useful in hybrid

schemes (see Chapter VIII), provide a stability baseline, introduce total variation

notions to SPH, and provide the ability to "window-in" on the best methods.
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V. CONVERGENCE

In this chapter, the consistency and stability results of the previous two chap-

ters are used to obtain convergence results for SPH. Convergence is probably the

most important concept in numerical analysis since it addresses how close a numeri-

cal solution is to the actual solution. Usually convergence theorems are proven using

consistency and stability results; and that is the approach taken here.

In this chapter, a convergence theorem, taken from finite differences, is ex-

tended to SPH through the statement and proof of three new lemmas. The first

lemma is used when only considering the kernel approximation. The second lemma

is used for the entire SPH method, but assumes the function is at least piecewise

continuous. The third lemma is an extension of the second when the function is only

piecewise constant. Since these lemmas use the consistency results from Chapter

III, they have the same restrictions as noted there. However, the most restrictive

assumption, that Ax is equal to rn/p is actually not important in the first two lem-

mas. Most of the work described here is based on the work of Lax and Wendroff

(29). A good summary of convergence results for finite differences may be found in

LeVeque (32).

The first section of this chapter details the convergence results from finite

differences in a rather general fashion. The second section then states and proves

the three lemmas allowing the finite difference work to be extended to SPH. To start,

consider the initial value problem for the general conservation equation:

ut + f(u), = 0 (5.1)

u(x,0) = U(X ). (5.2)

5.1 Finite Difference Approach

Consider the finite difference method written in conservation form
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At
Vn+I = V" - [F(Vtj) - F(V";j - 1)1 , (5.3)

where F(Vn;j) is the numerical flux function more completely written F(lj,._p,

-P+ , * l/ +jq) for some p > 0 and q > 1.

Definition 6 (Weak Solution) u(x, t) is a weak solution of the conservation law

(5.1) if the following holds for all test functions O(x, t) E Co(JZ x Z+)

0 [tu+¢f(u)]dxdt = -J 0 (x,0)u(x,0)dx. (5.4)

A discussion of weak and classical solutions to the general conservation equation is

included in Chapter II; see that section for more information and references. The

main theorem of this chapter is the Lax-Wendroff Theorem. The proof is not included

here, but the three lemmas derived from this theorem later in this chapter are proved

in a similar manner. See Lax (29) for the original proof.

Theorem 1 (Lax-Wendroff) Let VA&,At(x, t) be a solution of (5.3), consistent

with (5.1). Assume VA ,-t (x,Vt) - (x,t) as Ax, At --+ 0, where the convergence is

in a bounded a.e. sense. Then V(x, t) is a weak solution of (5.1)-(5.2).

Although Lax and Wendroff are not specific about what they mean by "con-

vergence in a bounded a.e. sense," it is defined in this dissertation as follows:

Definition 7 A sequence of Lebesgue measurable functions, {f, }, defined on a space

£, converges in a bounded almost everywhere (a.e.) sense to f if If(x)l < M(x) a.e.

and limi--,o fi = f a.e. using (the norm for C).

(Reference Naylor and Sell (45))

The following theorem, definitions, and other ideas are needed from functional

and real analysis. See Royden (51) or Naylor and Sell (45) for more information and

proofs.
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Theorem 2 (Compactness) Let (X, d) be a metric space. Then the following

statements are equivalent:

"* (X,d) is compact

"* (X, d) is sequentially compact

"* (X, d) is complete and totally bounded

Definition 8 (Sequentially Compact) A metric space (X, d) is said to be se-

quentially compact if every sequence in (X, d) contains a convergent subsequence.

Definition 9 The space Lt,T Is an extension on the Lebesgue space, LI, for functions

of both time and space where

L,T - {u= : IUIIl,T < 00} (5.5)

1IUMIX,T = Jf ]u(x,t)l dx dt. (5.6)

Definition 10 TVT(u) is an extension of the total variation function, TV(u), for

functions u of both time and space. It is defined as

TVT(u) =- limsup 1-jT I 0u(x + E,t) -.u(xt)Idxdt

+ lims up- x, t+ + -) -u(xt)ldxdt.
C-.O f O1 u

Definition 11 The notation, suppz (u), is used to identify the support of the function

u(x, t) with respect to the x variable.

With these theorems, definitions and the material in the Chapter II, a conver-

gence result (Theorem 3) is obtained. Consider the following domain where B, R,

and T are positive constants

D = {u E L,T : TVT(u) <_ B and supp,(u) C [-R,R] Vt E [O,T]}.
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It can be shown that E is a compact set. Now for the convergence definition, theorem

and outline of the proof. These ideas are taken from LeVeque (32).

Definition 12 (Convergence) Let W be the set of all weak solutions to the con-

servation law and let dist(V, W), the distance from a function V to the set, be defined

as

dist(V,W) = inf IIV- wIl,T.
wEW

Then by convergence we mean

dist(V,, W) -- 0 as K -- 0.

LeVeque makes the following comment in regards to the convergence definition.

"There is no guarantee that IIV - wI1l,T --* 0 as ,c -- 0 for any fixed weak so-

lution w(x, t). The computed V,, might be close to one weak solution for one value

of r, and close to a completely different weak solution for a slightly smaller value

of the time step r.." (32:159) He states further that "what the convergence tells us

is by taking a fine enough grid, we can be guaranteed of being arbitrarily close to

some weak solution." (32:159) Under this definition, uniqueness can be a concern as

is addressed in the note after the proof of Theorem 3.

Theorem 3 (Convergence) If V,,(x, t) is a solution to (5.3), consistent with (5.1),

in conservation form, has a Lipshitz continuous numerical flux, and is contained in

the domain V then VY,(x, t) converges to a weak solution of (5.1).

(Reference LeVeque (32))

An outline of the convergence proof is as follows. Define W as the set of all

weak solutions to the conservation law. Assume V,, does not converge to any w E W.

Then there is some c > 0 and some sequence of approximations {V.1, V,,2,...} such
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that j -+ 0 as j oc o while

dist(V,,VW) = inf fIV,, -WH1,T > f for allj. (5.7)
wEW

That is. let c be as chosen previous to equation (5.7). Then there exists 0 < k, such

that dist(Vk,W) > f. Next choose 0 < k2 < k, such that dist(Vk2,W) > f. Finally

choose 0 < k1+1 < k, such that dist(Vk,+,, W) > c. Therefore the distance of V/t = Vkf

from W is larger than c for all 1. Because V1 E TV, a compact metric space, by the

compactness theorem this sequence must have a convergent subsequence, { 1t, },

converging to some function V E D. Then, far enough out in the subsequence

I1fI. - VII,,T < 6 for sufficiently large m. (5.8)

Further, by applying the Lax-Wendroff Theorem on this subsequence, the result that

V must be a weak solution of the conservation law is obtained, ie. V E W. But

each VI,. is one of the Vk,,'s. This implies for large enough m, dist(t,,, W) > f

and dist(Vim,w) < c. This is a contradiction, so the original assumption that the

arbitrary sequence V,, does not converge to a weak solution is false; and the proof is

complete.

Note: the above work only guarantees convergence to some weak solution,

not a unique weak solution. For uniqueness an additional requirement, such as

consistency with an entropy condition, must be imposed. See equations (2.17)-(2.18)

and surrounding material in the Chapter II regarding the entropy condition.

5.2 SPH Extensions

The convergence ideas just discussed are now extended to SPH. This is done by

stating and proving three lemmas, derived from the Lax-Wendroff Theorem. Start
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with the kernel approximation form

u = -Rf(u) for u(x,t) E C.(Q x [0,T]) (5.9)

where Rf(u(x,t)) = f f(U(Xo, t)) W'(x-x,)dxo.

C. is the space of piecewise continuous functions and f0 is the spatial domain of u.

Since only one dimensional problems are considered here, Q is simply an interval on

the real line.

Lemma 3 (Kernel Approximation) Let uh (x, t) be a solution of(5.9), ronsistent

with (5.1). Assume 3u(x,t) such that uh(.z,t) 0-- u(x,t) as h --- 0 in a bounded a.e.

sense. Then u(x, t) is a weak solution of (5.1)-(5.2).

Proof. Let O(x,t) E C,(RZ x R+) and Uh(X,t) be a solution of (5.9). Multiply

equation (5.9) by O(x, t) and integrate over all time and space

JOI LO (X,t) 'Uh(X,t)dX 4 'I.
00= - L 0 (,t f(uh(Xo, t)) -W(x,-o) dx dx dt . (5.10)

Since € has compact support, there exist positive constants r and r such that

¢(x,t) = 0 VxER whent_>r (5.11)

O(x,t) = 0 Vt E IZ+ when JxJ >_ r, (5.12)

ie. 0 is only non-zero in the box {[-r, r] x [0, r]}. Therefore in the integrals to follow,

the integrals are actually not taken over an infinite domain, but a finite domain.

First, consider the left hand side of equation (5.10). Change the order of

integration, integrate by parts, simplify using the compact support of 0, and change

the order of integration back again. Changing the order of integration is justified
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considering the compact support of € and the Fubini Theorem:

a atJOL •(., t) uh(x,t)dx dt = ao O(x , t) -uh(x, t) dt dx

at ' atI- /L:{(x,t)uh(x,t)[•o - 1008 dld

= -J O(x,O)uh(x,O)dx - or0 t(Jx,t)uh(xt)dtdx

= -L (x,O)uh(x,O)dx - J 00 t(X,t)uh(xt)dxdt. (5.13)
O0 O0

Second, consider the right hand side of equation (5.10). Change the order of

the inner integration, integrate by parts, simplify using the compact support of 0,

and change the order of integration back again. Once again, changing the order of

integration is allowed based on note regarding the compact support of 0 earlier and

the Fubini Theorem:

(x't) j f(uh(X.1t)) -W(x -_x.,)dxw0 ,-dx

f -jf (uh(Xo,t0)){4(x,,t) Tw( - x) dxdxdt

_ g . r(,,.)£ .,,w(_o• x,•1- 1 f f(Uh(X., 0)){O(X, t)W(x - X) 00

1- Jo8(x t) W(x - x,,) dx} dx0, dt

- 0I j f (uh(X., 0)J -0 0(x, t) W(x - x,) dx dxdt

- J 00J. xrtjf (Uh (X., 0)) W(X - X 0) dx dx dt. (5.14)

Put the two sides of equation (5.10) back together (from equations (5.13) and

(5.14) ) to obtain

- J O(x, 0) uh(x, 0)dx = L {(x,t) th(xt)

+ .0A(iXt), f(Uh(x, t)) W(X- Xo) Xo}d xdt. (5.15)
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For the first term in equation (5.15) the following is developed. By the assumption

that Uh converges in bounded a.e. sense, uh(x) < M(x) a.e. Then there exist

Lebesgue integrable functions g = M101, fh = OUh, and f = ou. Further since o is

continuous, fh converges to f a.e. Then apply the Lebesgue Dominated Convergence

Theorem (limh-0 fh = f limh--.o fh = f f) to obtain

lim [- I (X,O)uh(,O)d(X = - HiMn[(¢(x,O)uh(x,O))] dx

= - (x,O0) u(x,O)dx.

The second term in equation (5.15) is handled similarly

J 0,-t (x,t)uh(x,t)dxdt -- j 0 t t(x,( t)u(x,t)dxdt as h - ,0.

From consistency

jf(uh(xo, t))W(x-xo)dxo = f(uh(x,t)) + hVek

'C
2

where ek -- T sup• If"(•)I. If f is Lipshitz continuous, and since uh -+ u in a

bounded a.e. sense, then f(uh) is bounded and f(uh) -- f(u) a.e. Then apply the

Lebesgue Dominated Convergence Theorem on the last term

lir ' I '0.(Xt) J f(u,(x,, t)) W(x - xt,) dx dx dt

too ,
- lim J 0__4'(X, t) [f (Uh(X,t)) +h2 ekldx dt

= jo0f0. (x, t) f(u(x,t)) dxdt.

Therefore, conclude from equation (5.15) that

00711[,j(Xt)u(x,t)+ (x,t) f(u)]dxdt = L (x,O)u(x,O)dx. (5.16)
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Since equation (5.16) holds for any test function ¢, u is a weak solution of (5.1).

0

The second extension of the Lax-Wendroff ideas to SPH addresses the particle

approximation form

N

it = -S'f(u) where S'f(u(xi,t))= 1:Ax f(u(xj, t))W'(x,-xj). (5.17)
j=1

Lemma 4 (Continuous Particle Approximation) Let UhCX, t) E C.(Q x [0, T])

bý piecewise continuous and a solution of (5.17), consistent with (5.1). Assume

3 u(x,t) such thet ,,(x,t) --+ u(x,t) as h --+ 0, Ax -- 0 in a bounded a.e. sense.

Then u(x,t) is a weak solution of (5.1)-(5.2).

Proof. Let O(x,t) E Co,(IZ x 7Z+) and Uh(X,t) be a solution of (5.17). Multiply

equation (5.17) by O(x, t) and integrate over all time and space

N a
-fE f =(uh(Xit)- W(X-xj) dt. (5.18)

-10 1O=1 a

As in the proof of the previous lemma, take note of the compact support of 0 and

will use equations (5.11) and (5.12) in this proof.

First, consider the left hand side of equation (5.18). Note this is exactly the

same as in the proof for the last lemma. Therefore, the same steps will be done and

not shown here. Namely, change the order of integration, integrate by parts, simplify

using the compact support of 0, and change the order of integration back again

F, O(X, -t) h(X, t) dxdt
orx t) at

= - J (x, 0) uh(x, 0) dx - f Lo (x, t) Uh(Z, t) dx dt .(5.19)
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Second, consider the right hand side of equation (5.18). Change the order of

the inner integration and summation, integrate by parts, simplify using the compact

support of 0, and change the order back again. As in the previous proof, use equa-

tions (5.11) and (5.12) to justify changing the order of integration and summation:

- (,t) _Axjf(uh(xj,t))]7W(X-xj)dxdt_0 j=

coN 00"J

-:A~ f +~(xUt(Xj 0) Ox,) d Wx -xdtd d
-JZ E/ xjf(Uh(xj,t))J O(x,t)W(x-x,)dxdt

- f_. 57-0(x,ft)hW(x -xj))dx dt ,.--

00 N 0o

= =Z
TO 170 f_~ x t AXj f (Uh(Xi 0) W (X--XJ)] dx dt. (5.20)

Put the two sides of equation (5.18) back together (from equations (5.19) and

(5.20) ) to obtain

I- L (X, 0) Uh(xdx = 7 L t(X, t) Uh(X, t) + O(x, t)

X •[•ZJf(uh(X, 0t))W(X-Xj)] }dxdt . (5.21)

As in the proof of the previous lemma, by the assumption that uh -+ u in a bounded

a.e. sense, use the Lebesgue Dominated Convergence Theorem on the first and

second terms in equation (5.21) to obtain

- (x,O)u(x,O)dx
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and
0o 2e,(xz, t )u( x, t )dx dt

respectively as h --* 0. From consistency

N
y XA xf(uh(X, t)) W(x - xj) = ] f(uh(X0 , t)) W(x - xo) dxo + hI Ax e,

j=1

= f(uh(x,t)) + h2 ek + h Axe,,

where ek = IF SUPtEQ If"()j) and e, = -2 sup(E I[f(ý)W(x- )]'l. Since uh --+ u

in a bounded a.e. sense and f is Lipshitz continuous, as in the proof of the last

lemma as h --+ 0 and Ax -+ 0 the last term becomes

lim limA,.&_o 0j(x,t) 0 AZj f(uh(Xjt)) W(x-Xj) d dth---0 10

p
0

0 f00

= lir lim f I, (xt)[f(uh(X,t)) + h2 ek + h Ax er] dX dt
h-O Az--O Jo i0

Therefore conclude from equation (5.21) that

S [4,t(Xt)u(x,t)+O.(x,(t)f(u)]dxdt = - J 4(x,O)u(x,O)dx. (5.22)

Since equation (5.22) holds for any test function 4,, u is a weak solution of (5.1).

0]

The third extension of the Lax-Wendroff ideas to SPH also addresses the par-

ticle approximation form (5.17). However, at this time instead of assuming that

Uh(X, t) is continuous (piecewise), assume it is only grid function in x.

Definition 13 (Grid Function) Uh(x, t) is a grid function in x if it is a piecewise

constant function defined at the grid points and constant in a region around each

grid point.
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Sometimes a grid function is defined as a linear interpolation between the grid points

instead of simply constant. In that case, the previous lemma would apply. However,

the piecewise constant notion of a grid function is maintained here.

Lemma 5 (Discrete Particle Approximation) Let uh(X, t), a grid function in

x, be a solution of (5.17), consistent with (5.1). Assume 3u(x,t) such that Uh(X,t) "-+

u(x,t) as h --- 0, Ax -+ 0 in a bounded a.e. sense, using the Li,T norm given in

equation (5.6) (ie. fo ff_.° IUh(X,t) - u(x,t)Idxdt -+ 0). Then u(x,t) is a weak

solution of (5.1)-(5.2).

Proof. Let O(x, t) E C,'(TZ x Rf+) and uh(xi, t) be a solution of (5.17). Multiply

equation (5.17) by Axi O(xi, t), sum over all space, and integrate over time:

E AXiI(Xi, t) OUh(Xi, t) dt = -,Axi(xi, t)
0i-00 ato 00

N

X E A× f (Uh(Xi, t)) W'(X - xj) dt. (5.23)
j=1

As with the last two lemmas, use the compact support of € and the relationships

shown in equations (5.11) and (5.12) in this proof to to deal with only finite domains.

First, consider the left hand side of equation (5.23). Change the order of

integration and summation, integrate by parts, simplify using the compact support

of 0, and change the order back again. As in the previous two proofs, use equations

(5.11) and (5.12) to justify changing the order of integration:

[0 00 a 0 00 9' AXi O(Xi, t)5-•Uh(Xi, t) dt = Axi O(xi, t)-' uh(Xi,t)d
10i-00 1=-00

= . Ax (Xi, t) Uh(Xi,0 - 1 O(xi, t)uh(xit)dt
i=-00 t=0 a

= -, AXiO((Xi,)U - F, LXi in Ot(Xi, t Uh(X0, t) dt
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-0 A00~,,~hx~O 00
-E- AxiO(xiOAuh(x,,O) -- 1 E AXiOt(x,,t)uh(x,,t)dt .(5.24)

i=-00 i-00

A process known as summation-by-parts is needed in the next step. It is the

discrete analogue to integration-by-parts. Since it is not widely used, a demonstra-

tion how it works in provided. For sequences {ai} and {bi} and positive constant

R

R R R R+I R-I

E a,(b,+l - b,_i) = a ab2+i- Fj a1b,_1 = a,_b, - E ai+lb,
i=-R i=-R i=-R i=-R+I i=-R-1

R

- Z (ai+l-ai-1)bi
i=-R

+ aRbR+i - a-R-lb-.R -- a-Rb-R-1 + aR+lbR.

Now, consider the right hand side of equation (5.23). Change the order of the

inner summation, use the definition of the derivative, sum by parts, simplify using

the compact support of 0, and change the order back again. As before, use equations

(5.11) and (5.12) to justify changing the order of summation. Also note: assume that

Axi = (Axi+1 - Axi-.)/2 (see equation (3.17) for consistency). This is used before

and after the summation-by-parts to allow that process to work as demonstrated

above:

E AXi 4(x,, t)E•AX3 f(uh(X3 ,t))W'(x,-xj)dt
i=-00 j=1

= - AX f(uh(xi, t)) Axi xi, t)W'(xi - xj) dt

j= [=--00

= E Ax3 f (Uh(Xi, t)){ Axi(Xi, t)
j=l i=-0

X [W(x+lI - Xj) - W(X1 i 1 - •j) + O(Ax2)l d
x5+ 1 - x. 13
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= I'xfo•:••~(uh(x,,t)){ ,_-- , I:'L[•x÷"?x+, ,,•('"t )

E~~~~~~~ 4 A- U X )1 ,x

+ o(AX2)] W(xi, - x1 )} dt
= 00Ak [ (xi+i, 0 (xsl t)+ O(AX2)

i=-00 Xi+I - Xi-1

x x u~j )Wx j]dt. (5.25)

Put the two sides of equation (5.23) back together (from equations (5.24) and

(5.25) ) to obtain

- x•, O,(x,,O)uh(X,,o) = E , Ax, t(Xi, t)0 Uh(X,, t) (5.26)
i=--00 i=-00o I

+ [O(xi+i, 0 - O~x2 1 ,t) + Q(AX2)] i [~AXfAUh(Xit)) W(Xi - X3)] dt .

Note by definition of the Riemann integral that the sums in the first two terms in

equation (5.26) can be replaced by integrals as Ax -+ 0. Also as in the proof of the

previous two lemmas, by the assumption that Uh --. u in a bounded a.e. sense, the

first and second terms in equation (5.26) become respectively

lim lim 1- AxiO(xiO)Uh(Xi, O) = lim - (X,0)uh(XO)dxh-0* Ax-*O i0 h-0 - 1O

=- Jc(x, O)u(x,O)dx

and

lim lim 00 Axid~(x,, t)uh(Xi, t)dt = lim 0 (t(0 , t)uh(xt) dx dt

h-.O Ax-O 0 i=-O0Z h--0 JO _o

= f j t(x , t) u(x, t) dx dt
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From the definition of the derivative

O~x~i 0- O(x 2 il,t) = 0.(Xlt0 + O(AX 2 ),
xi+1 - Xi-l

and from the Consistency Chapter (III)

N
EAXj f (Uh(Xi, t)) W(X -Xj) = f f(Uh(X., t)) W(X -X.) dX, + h Ax e,
J=

1

= f(Uh(Xr,t)) + hMek + hL~xer,

where ek =-SUPtE f"Q ) and e,.=2SPElI[() x- So the third

term in equation (5.26) becomes

JO E xi I) O(zAX2)]

00 00~~d

+ 1: Ai.[--x1  t) O(hAx, h') + f (Uh(Xi, t)) O(AX2)] dt.
i= -00

Then btain

lhim1 {~ 0~, (Xi t) f (Uh(Xi, t)) dt

+ 1 : 0 Ax [0,(xi,tO(hAx, h) + f (uh(xi, t)) o(Ax'z)] dt}

1 JJ00 Ox(X, t)f (Uh(X7t)) dx dt + 1JJ jO'0(x, t)O0(h2) dx dt.
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Then using uh -+ u in a bounded a.e. sense and f is Lipshitz continuous, this last

term becomes

lim 0.(x,t) f(uh(x,t))dxdt + 0,(x,t)O(h2)dxdt
h-O -c i_-00

= f t&(x, t)f(u(x,t))dxdt.

Therefore conclude from equation (5.26) as h -- 0, Ax - 0

jj [Ort(x,t)u(x,t)+q$x(x,t)f(u)]dxdt = - q(x,0)u(x,0)dx . (5.27)

Since equation (5.27) holds for any test function 0, u is a weak solution of (5.1).

5.3 Summary

The proof of the convergence theorem (Theorem 3) given earlier in this chap-

ter from LeVeque relied on set theory and the Lax-Wendroff theorem and not the

numerical technique (other than consistency). Hence, the convergence theorem is

applicable to SPH as long as a suitable replacement for the Lax-Wendroff theorem is

available, since it relies on the specific method (finite differences). The three lemmas

that were stated and proved in the last section are such replacements in SPH for the

Lax-Wendroff theorem. Therefore under the assumptions of the convergence theo-

rem and the applicable lemma, SPH will converge to a weak solution of the general

conservation equation.
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VI. KERNELS

In this chapter the key element of the SPH method, the kernel function, is

discussed. The kernel plays major roles in consistency (the kernel approximation)

and stability (the PW" instability and several stabilizing techniques). Hence, it

is key to the convergence as well based on the previous chapter. In addition to

these more mathematical properties, the kernel affects accuracy; a primary concern

of all those using SPH. Although the method is O(h2 ,hAx), when h, or Ax are

not very small the coefficients of these error terms can become quite important.

Those coefficients are controlled by the function being approximated and the kernel.

Since the function is, to some extent, a uncontrollable factor and the kernel is easily

changed, the kernel becomes a primary factor in accuracy.

The material covered in this chapter involves two areas. First, is the properties

of the kernel, which include discussions on the kernel requirement, higher order ker-

nels, and the smoothing length. Second, is a comparison of several kernels. It is this

second area that the major contributions are found. This includes the development

of measures of merit for kernels and both qualitative and quantitative comparisons

of kernels. The results lend insight into the kernel under given assumptions while the

measures of merit are general enough so that they can be used under m y different

assumptions.

6.1 Kernel Properties

In this section some of the basic properties are discussed. These include a list of

requirements for a function to be considered an SPH kernel, making kernels higher

order, and the smoothing length. Much of this work takes the form of literature

review mixed with filling in the details that are lacking.
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6.1. 1 Kernel Requirements. Many diL',erent kernels have been used in SPH

as shown in various journal articles. To some extent it should not matter which

kernel is used. However, Monaghan's first golden rule of SPH is "if you want to find

a physical interpretation of an SPH equation it is always best to assume the kernel

is a Gaussian." (44:545) Throughout this dissertation various rules and requirements

are applied to the kernel. These are summarized below

"* The kernel should be normalized: fo W(u)du = 1

"* The kernel should be even (symmetric). This is required to obtain a second

order method.

"* The kernel should have compact support. In general the support is defined in

terms of h and Kc. h is a measure of the width of the kernel and provides a

standard distance and unit to use. It may be changed from particle to particle.

K is a constant for each kernel that determines the spread of a particular kernel

in terms of h. So, define W(u, h) = 0 for lul > Kh.

"* The kernel should be sufficiently smooth. For the function approximation it

needs to be continuous. For the derivative approximation it also needs to

be continuous, but better results will be obtained if it has a continuous first

derivative. For linear stability analysis it is necessary to have one order of

smoothness higher than listed here.

" The kernel should be of the form W(x, h) = K(1) where d is the dimension

(1, 2, or 3). Although there does not appear to be a pressing need for this ftorm,

it simplifies the choice of kernels and allows the application of distribution

theory. Note: the normalization constant is sometimes pulled outside of K(u)

so that only the coefficients of K change from one dimension to another. To

accommodate this, the notation K(u) = ck(u) is used here.

"* The kernel should be positive. This is only required if the kernel is being treated

as from a Delta Family in distribution theory (see Stakgold (58)). However,
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it is also desirable in many cases, especially when performing the function

approximation to ensure non-physical results do not occur.

Any function that meets the rules above can be used as an SPH kernel. Note:

later in this chapter the requirement that K'(0) = 0 is employed. Although not

required it appears that this is a good choice for accuracy concerns.

6.1.2 Higher Order Kernels. For the most part, SPH is considered an

0(h') method. However, it is possible to obtain higher order estimates, just as in

finite differences. First, the kernel approximation can be made of order 0(h4) by

requiring equation (6.1) to hold:

J u2 W(u,h) du = 0. (6.1)

When errors were discussed in Chapter III earlier, the terms involving u and u3

vanished when W was even. So when equation (6.1) holds, the lowest order term has

a u4 factor, which makes the method 0(h4). The trouble is, this makes only the kernel

approximation more accurate, not the particle approximation to it. The particle

approximation is not effected by changing W, only by increasing the number of

particles. The number of particles and corresponding h must be such that the particle

approximation is also of higher order or else changing the kernel gains nothing.

Another possible problem is that fourth order keruels must be negative for

part of the region over which they are defined in order for equation (6.1) to hold.

This can cause density to become negative for some particles (if using density-by-

summation form), violating the last rule in the previous subsection. Although these

local problems seem significant, the published literature to date implies they do not

cause any global problems.

Monaghan (38) gives a procedure for making kernels higher order from their

lower order forms (at least for three dimensional kernels). Two of the more popular
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examples are the Super-Gaussian and Enhanced W4 B Spline (both bell shaped).

Since the work in this chapter mostly concentrates on one dimensional kernels, those

forms of the higher order kernels are listed in Table 6.1. Note: /I(u) = cIK(u) and

W(x,h) I K ).

Name K(u) IKL I-D c,,

Super-Gaussian (- u 2)e-' 3 1
r 17 147 2 .181.117 -L-7 -'t +"L- l if 0 < Jlu <ý I

En hanced B-Splines ~ 4 U ,4 fO•uI 2 _Shper-Gaussiane i. (2 - uI)2(49 - 471ul) if 1 < Jul < 2 18

Super-Gaussian 2 (1.49624 - u2)e-u 3 0.566214

Table 6.1 One-Dimensional Higher Order kernels

For the Super-Gaussian some of the values are not correct. To six digits, the
3 should be approximately 1.49624 and cn should be approximately 0.566214 (the
2

actual values involve the error function). However, it is common in SPH to develop

the Gaussian on (-oo,oo), but then use it on only (-3h,3h). Although for many

problems, the results using the two versions are virtually identical, it is probably

best to be consistent in how a kernel is developed and used, especially for the higher

order kernels.

6.1.3 Smoothing Length. The smoothing length h is very important in

SPH for efficiency, accuracy, and physical processes. The efficiency is obtained when

summing over the neighbors for a particular particle, since only neighbor particles

within a distance of Pch need be included. A smaller h means the sum is over a smaller

number of particles. The accuracy comes from having a sufficient number of particles

in the rch range. Also, from earlier, it was stated that the kernel approximation was

O(h 2). The physical process comes from h controlling the range over which the forces

are felt.

The smoothing length has varied quite a bit through the literature. The basic

form is for h to be selected at the beginning of the problem and to remain constant

thereafter. This fits in well with the Eulerian picture of a fixed mesh. Unfortunately
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this is not always as accurate as desired. So two forms of a varying h are discussed.

First, h can vary for each time step. This is similar to the basic form and does not

require much modification. The second is to allow h to vary for each particle. This is

a large departure from the basic form and is discussed later. In general, the analysis

performed in this dissertation uses the most basic form of the smoothing length. The

remainder of this information is for completeness.

The primary question is how to select the value for h, whether once initially

or for each time step. If h is too small (with respect to a given particle spacing),

large fluctuations could occur because of not smoothing enough and the algorithm

could just be modeling particle motion instead of fluid flow. If h is too large, details

are smoothed out loosing accuracy. If h is to remain fixed, a simple rule of h K Ni '

is purported to work well in the literature. Also note the relationship in (6.2) holds

fairly well, as the errors from the kernel approximation and particle approximation

are roughly balanced:

O(e, h M.,) - O(ek h2 ). (6.2)

However, if h is to vary in time, Gingold and Monaghan (13) suggested using an

average density and later Monaghan (38) recommended using an average number

density. The latter is shown in equations (6.3) and (6.4):

h 1x 1 (6.3)

where
1N 9

1 - P32 . (6.4)fi N mi

These formula allow h to decrease when f (or p) increases and vice versa keeping

the resolution roughly constant throughout the calculation. It should be noted that

4 should be approximately equal to the average particle spacing in one dimension.

Otherwise the particle approximation is of a disproportionate order to that of the

kernel approximation. Note: these relationships (6.2, 6.3) are purported to work
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well in three dimensions and fairly well in two dimensions, but not very well in one

dimension.

In some problems, having h constant for all particles does not provide the

accuracy and resolution required. In areas where particles are highly concentrated,

h may be too large, while in other areas it may be too small. So several authors have

proposed methods to allow h to vary for each particle, giving hi for particle i. There

are three main concerns with using this scheme: how to choose hi, how to maintain

conservation, and how to account properly for hi in the derivation of the equations.

To choose hi at each step, Evrard (10) suggested hi should scale with local

interparticle separation. This leads to the most common method of calculating hi

as shown in equation (6.5):

Dh_ ( hd) Dpi (6.5)

where d is a constant usually taken to be the number of dimensions. The derivation

for this equation was not given by Evrard, so it is done here. First, the desired

relationship is
Ax - c, (6.6)h

where c is a constant. In one-dimension, Ax _ m But that does not hold in higherp

dimensions. Assume E is a square about a particle in two dimensions or a cube

in three dimensions, then let Ax be the diagonal of that region. Note: it is also

possible to assume M is a circle (or sphere) with Ax as the diameter and obtain the
p

same form (6.5). In fact, many other choices are possible as long as they lead to

Ax = Ch dM/p) for dimension d (1,2.or 3) and constant ch.

Side of Square =s = v =

Ax V3 =
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MSide of Cube = s = /V=olume = •

-Ax = v/-3s = V

This leads to Ax g Vr(M)d, for d = 1,2,or 3 or more generally Ax ; ch(p) .

Putting this together with equation (6.6) yields

ch = Ax

Dh D(Ax) Ch(-) _ m- 1 olDp
C Dt Dt = cYM Dt p p Dt

Ax Dp eh Dp
pd Dt pd Dt

_ ( (h )Do
Dt- - "pdDt

This equation for h seems to make sense in expanding and contracting gas clouds.

However, for problems with material strength it may not be sufficient since fracture

and fragmentation are not being properly represented. Also, although this differen-

tial equation for h works well overall, for some particles, the Al ratio may still be

too large. However, by selecting a constant Mxh, the maximum value allowed for the

ratio, then

Ax _ d_ ( m\
I=- m < Mh (6.7)h h p

h .(6.8)

In an algorithm, to calculate h use the maximum of h calculated by equations (6.5)

antn (6.8).

The most common means of maintaining conservation involve replacing h in

the standard SPH formulas developed so far with some form of a symmetric combi-

nation of hi's. For example a simple arithmetic mean seems to work quite well (ie.
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W(u, "j') ). Another method is to replace the entire kernel function with some2

sort of symmetric combination of two kernel functions (ie. [W(u, h,)+W(u, hj)I/2 ).

Both methods seem to work well, with neither having a distinct advantage.

The last item is a little more complex. When replacing .z with hi, it must be

considered when the gradient or any other derivative of the kernel is taken. By the

chain rule an extra term that resembles -WVhj is obtained. One thought is that

hi does not vary too much from particle to particle and, therefore, the gradient of h

is quite small. At least smaller than the error in the particle method itself. This is

probably a reasonable assumption, and is the one most often used. However, it does

raise the question (as yet unanswered) what if this term in not negligible?

6.2 Kernel Comparisons

As stated earlier in the chapter, to some extent it should not matter what kernel

is used. That is true, especially in the limit as h and Azx become small. But when

they are not small, as is common in practice, the choice of kernel can drastically

change the results. Hence, an analysis to determine what are better kernels and

poorer kernels is performed. in this section. Although it is done in several stages

there are three primary parts to this work. First, measures of merit are developed

for kernels under smooth and non-data circumstances. These can be used as given

or easily modified to analyze kernels under other assumptions. Second, using the

basic equation behind the measure of merit, 18 kernels are analyzed qualitatively.

Third, using the measure of merit the 18 kernels are analyzed quantitatively. The

overall results are that bell shaped kernels are better to use than either concave up

(hyperbolic shaped) or concave down (parabolic shaped).

To start this analysis, consider the eighteen kernels shown in Table 6.2. Plots

of these k(:,nels and their derivatives are found in Figures C.1 - C.10 in Appendix C.

They are all even, positive, and of the form W(x, h) = !K(f) = £k(!),where ,

is the normalization constant. So the functions K and k? are the same except that
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K is normalized, and k is not. Note: k' is shown in Table 6.2. They are also all

defined to be zero outside of Kh. In the table, the Type column is either: B - Bell

Shaped, P - Parabolic Shaped (concave down), or H - Hyperbolic Shaped (concave

up). The parabolic shaped kernels are so named because they resemble a downward

opening parabola (# 11 actually is a parabola). Similarly, the hyperbolic shaped

kernels are so named because they resemble the negative exponential function which

is a hyperbolic function (# 4 actually is a hyperbolic function). Also in the table,

c, is the normalization constant for one dimension (1-D).

[1# Name JType[K (u) r. 1-Dc. ]J
1 Gaussian B e-u' 3 1

2 W4 1B-Spline B j •(2-IuI) 3  if01< u<l 2 2_ '(2 if I < Jul <5 23
3 Cosine B (1 - )(1+cos(f)) 2

_____+Cos('))___ 8(;7
2
+3)

4 Exponential H e-Iu - e-9 9 0.500618
5 K - 2 Exponential H e-4.5ul - e-9 2 2.250555
6 1/X,2 H 2+I + jIu-6 2 7.337061

7 1/X,4 H -I - + IUI-8 2 30.163694
____________4+IuI 36 _______

8 1/X,10 H i •u + 1u4 2 283.125508
______________0+___ 144 ______9 _X2 H j(Jul- 2)2 2 0.375

10 -x - e-' P 2 - lul - e-uIl + e- 2  2 0.355617
11 4-X 2  P 4-u 2  2 0.09375
12 8- X3  P 8 -- U13  2 0.041667
13 K - 2 Gaussian B e-2.25u-- e-9 2 0.846657
14 L Gaussian B (2 - lu[)e-u' 2 0.392674
15 Q Gaussian B (1 - U )e-U 2 0.643998
16 T Gaussian B e-u' - e-4 2 0.591401
17 Quartic-1 B (2 + 31ul)(2 - ul)3 2 0.0390625
18 Quartic-2 B 16 - 81u13 + 3u 4  2 0.0260417

Table 6.2 One Dimensional Kernels Analyzed

6.2.1 Accuracy From Consistency Analysis. The first thought is to consider

the bound from the consistency analysis in Chapter III. From equation (3.4), for a
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sufficiently smooth function, f(x), and for a kernel defined as above, the bound on

the kernel approximation in one dimension is

max If"( )1/2 ju2K(u)du. (6.9)

In comparing different kernels, the function f is a constant, so just use the integral.

For any given function, a lower value from the integral should indicate a better kernel

approximation. It would be desirable .ed that the final SPH approxima-

tion is also better for lower values of the integral. Unfortunately, this is not always

true. The values for the integral for the 18 kernels are found in Table 6.3.

__ # Name [Type [f K(u)du

1 Gaussian B 0.24989
2 W4 B-Splines B 0.16667
3 Cosine B 0.206123
4 Exponential H 0.979983
5 K - 2 Exponential H 0.0483464
6 1/X,2 H 0.165735
7 l/X,4 H 0.179783
8 1/X,10 H 0.190883
9 -X 2  H 0.2
10 -X - e-' P 0.372537
11 4- X 2  P 0.4
12 8 - X3 P 0.44444
13 ic -- 2 Gaussian B 0.110833
14 L Gaussian B 0.153629
15 Q Gaussian B 0.181942
16 T Gaussian B 0.221115
17 Quartic-1 B 0.190476

"f8 1Quartic-2 B 0.31746

Table 6.3 Kernel Integral Analysis

The data is this table indicates that the concave up (H) and bell shaped (B) kernels

are, for the most part, the better ones and the concave down (P) are poorer. However,

there are several exceptions. Based on work done later in this chapter, this holds
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only very broadly. The reason this indicator does not work as well as desired is

because it is evaluating only part of the SPH process, the kernel approximation. It

says nothing about the particle approximation. It is also a measure of the central

peakiness of the kernel. That is, the the smaller the value, the larger the peak is

at 0. If the error from the particle approximation is quite small, then this indicator

would appear more correct. In other words, as -* - 0, the integral results would

determine the better kernels to use. But for more sparsely spaced particles, which

occurs in practice, a smaller value of the integral could quite easily indicate that not

enough smoothing is being done because the kernel is too peaked. So at best, the

integral results are only one overall indicator of the goodness of a kernel.

6.2.2 Uniform Space, Smooth Data Analysis. In this section, functions

that are fairly smooth (ie. no shocks present) are considered and the particles are

required to be uniformly spaced. Also the analysis is performed in one dimension

only. The result is an equation that will form the foundation of the measure of merit.

Start by defining the following

Nfi :Z Elx y~jw'j !
j=1

xi = a + iAxi AXj = AX

Xij = xi - xj = a+iAx-a-jzAx = (i-j)Ax

-A" =~" K' '3(t) T2 h2  h hi-

Consider particle i E (1,N) such that x, -xI > re h and XN-Xi > rh. Then examine

functions that are constant, linear, and quadratic under the assumptions here to find

a basic relationship.
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(1) Assume f is constant. f = c f = 0. Since K is symmetric (even),

then K' is odd. This then yields

N .,W N~- AKX (i-j) - h2 K'(0). (6.10)
0 '- E Axj fj Wij k-h2 E 'j ( Ahh

j=1

Therefore, K'(0) must equal zero to model the derivative of a constant function

exactly (under the above assumptions on K).

(2) Assume f is linear. f = cx + d > f' = c. Also assume that K'(0) is

zero, so that a constant function is exact and EN I K' = 0 . This then yields

N A~XN A
c z EZAxfjW , - E (cx,+a)K' (i-j)

j=1 j=1

cAx N dAx=E xh, E K,, + h2 E j

j=1 j

cAx N
X- E-- Kij (subtract 0)

j=1

T'- 1 (Xj - Xj) Ki' C I x (K-i) 'z ~
""-- E (i "")

j=1 j=I

2==0 1 A X2)2 K' 1 AX (6.11)

It is fairly easy to see that no function satisfies equation (6.11) for all values of h

(3) Assume f is quadratic. f = cx2 + dx + e => f' = 2cx + d. Also assume

that K'(0) is zero again. This then yields

N

2cxi+d E Azxj (cx + dx + e) WV4
j=1

cax N dAx N eAx N
h2 I _ ji + h2 K;

j=1 Kh K:3

cAX N CAXN dlx N

x? F. .2 Z(2xixj)K'j.- -_d-x E KiZ (add 0)
j=K J=, 1j=
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AX N AX N AX N

= c, Zx?.K! + c-p- (2xix3 )K,' -d iKj
j=l j=1 j= 1

_h 2xs N K (subtract 0)
h2 2j= 1

=i~ AX N= -2x+ d) E(i- )K,',
j=1

1 -2 l ()K'(l+)A
I hl

This then shows that the same equation for linear functions works for quadratic

functions. However, this relationship does not seem to keep working for even higher

order polynomials.

Therefore, a kernel must be selected that that won't satisfy equation (6.11) for
some values of AL. By choosing a particular A-, it is possible to find which kernels

satisfy the equation. This is very useful in selecting the initial particle separation

for a given kernel, but does nothing towards irndicating what happens when particles

move. For unless the volume is held constant during a calculation, even the total

average A- changes from time step to time step. But consider an interval of values

over which A- varies. This is not exactly the same as in an actual calculation, but

should be close enough to determine what is a good kernel. Now consider three tests

based on this notion.

6.2.3 Test 1: Plots of Results. The first test is simply a plot from which

qualitative results may be obtained. For each kernel, plot -2 =l(A-)'g'(lZ-T-

and 1 for (A-) E [0.1,2.0]. These plots may be found in Appendix C (Figures C.11 -

C.28). From these plots three observations may be made. First, an overall opinion as

to which kernels are better than others. Second, a list of approximate values where

each kernel gives exact results. These are good initial separation values and can be

found precisely using a program such as Mathematica or MathCAD. Third, a better

understanding as to what happens when the particle separation becomes too large.
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For almost every kernel, the results start becoming quite poor when Ax = h. Of

course, for most of the kernels, the results are completely wrong when the separation

approaches Kh since nothing is being averaged there. In Chapter IV., it was noted that

there were problems in tension. Tension, of course, tends to force particles apart. So

the tension instability is worsened by the fact that the SPH approximation becomes

very poor when particles are too sparsely spaced. This result points out that the

instability and inaccuracy are intermixed so that it may be difficult to determine

which is the root of a particular problem.

6.2.4 Test 2: Error Norms. Although the results of Test 1 provide good

qualitative results, it is desirable to obtain quantitative results as well. To do this,

perform relative error norms based on equation (6.11). In this subsection both 11

and 12 relative error norms are calculated for 100 values of (A-x) E [0.2,1.2]. The

formulas for these are shown in equations (6.12) and (6.13):

11 ) 1 -2 1 (l0.2 + n K'(1(0.2 + 100 - 1 (6.12)100 10 100)) 1=

12 = ) 100 [-2 l (0.2+ - 2 K'(l(0.2 + n-) 2 (6.13)

l, norms could also be calculated, but were not since they can be easily inferred

from the previous plots. The -iterva.l [0.2, 1.2] can be argued as being too arbitrary.

However, it was chosen as follows: all of the kernels are very accurate for values

small enough, but seldom does one have the luxury (or computer time) to compute

with that many particles. Also, all of the kernels perform poorly when the values

become too large, and that might improperly skew the results. So a reasonable range

was set. Further, the range was centered on 0.7 (a popular value) and was chosen

large enough to apply to fixed h problems. Ax/h is more likely to vary over a wider

range in a calculation using fixed h than one using variable h. If for a particular

problem more information is available on the ranges or Ax, h, or the ratio of the
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t"'o other more appropriate intervals could be used. Other information can come

from the physical process being modeled. The results for the eighteen kernels may

be found in Table 6.4.

# Name [Type 11 1,2.
1 Gaussian B 0.00279564 0.00621844
2 W4 B-Splines B 0.0128797 0.0201059
3 Cosine B 0.0284004 0.0451499
4 Exponential H 0.0463731 0.0565237
5 ,. - 2 Exponential H 0.512015 0.569665
6 l/X,2 H 0.12708 0.156575
7 1/X,4 H 0.103547 0.130743
8 l/X,10 H 0.0893328 0.115851
9 _X2 H 0.0802408 0.107258
10 -X_ - e-' P 0.24071 0.293757
11 4-_ X2 P 0.291355 0.356247
12 8- X3 P 0.383839 0.471477
13 , _ - 2 Gaussian B 0.0901453 0.16566
14 L Gaussian B 0.0604716 0.0843238
15 Q Gaussian B 0.0119989 0.0192021
16 T Gaussian B 0.0320381 0.0405489
17 Quartic-1 B 0.0196585 0.0305967
18 Quartic-2 B 0.0887839 0.125373

Table 6.4 Relative Error Norms for Kernel Test 2

A few general conclusions can be drawn from the data in Table 6.4. First, the Gaus-

sian is the best of these kernels. However, like the Exponential it has a support (Kc)

larger than the others; which implies it uses more particles to obtain the average.

Therefore, it should be expected to have somewhat better results. Note: the wider

support will cost more in computation time since it requires a sum over more parti-

cles. So this is an accuracy versus efficiency concern. Second, the top six kernels are

all bell shaped (B), the next eight are either bell (B) or hyperbolic (H) shaped, and

the last four are parabolic (P) or hyperbolic (H). This clearly shows that bell shaped
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kernels should be the kernels of choice; however, the kernel must still be picked with

due care.

6.2.5 Test 3: Test Functions. Although the results of Test 1 and Test 2

have theoretical basis, they only show a kernel's worth for polynomial functions up

to quadratic. Th~erefore, three test functions are used to demonstrate if the previous

results still hold for higher order functions and validate Test 2 as a measure of merit:

"* Third Order Polynomial

"* Sine Function

"* Linear Step Function.

Plots :,f these three functions and their corresponding derivatives are shown in

Figure 6.1.

11 and 12 relative error norms are calculated for a given A- as follows: if f is the

function to be evaluated and S is the SPH approximation to f'

1 -=O Iof'(xi) - S(Xi) I12 (X Zi=0U If'(xi) )

h2 VIE -0f ý(

where N = (x,m, - Xo)/IAx and xi = x, + 1Ax. The values for xo, and xmr for each

function can be taken from Figure 6.1 as the left and right most points plotted. Note:

in order to avoid edge problems, extra particles are used at the ends to calculate S(x,)

when xi is close to x, or xme,,. To obtain a single number for each kernel, 100 values

of - are used to calculate an average (absolute or square) of the l4 and 12 errors
h

described above. The ranges chosen are. h E [0.1,0.2] and AX E [0.02, 0.241 implying

Ax E [0.2,1.2]. The formulas for these are

<11 > = ( I 0-2
n=O0
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f(x) Cubic f(x) Piecewise Linear

2 2

1.5 1.5

1

0.5-0.5 ,,,,
-0.5 1 2 3 4 5 6

f(x) Sine Derivative of Piecewise Linear

2

1 0.2

-0.2_

-2
-0.4-3

Figure 6.1 Test 3: Test Functions
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<12 > 10 [1, (0.2 + n___

The results are found in Tables C.5 and C.6 in Appendix C. In addition to the tables,

part of the results may be seen in the bar charts shown in Figures 6.2 and 6.3. In

these figures, the line with small boxes is the predicted goodness from Test 2 and the

bars are for the function results from Test 3. Only the smooth functions are shown

on these figures (Sine and Polynomial) since the properties are quite different for the

non-smooth results.

Smooth Data, 11 Norm

Q86 We- SFnc Tam Polyn Fnc
Test 2 Rewfs

0.4 0.4

(13 0.3

I.
0.2

0 0

1 2 3 4 5 6 7 8 9 I0 II 12 13 14 15 16 17 is

Kernels

Figure 6.2 Bar Chart for Test 3, 11, Smooth Data

Some general conclusions can be drawn from these figures for smooth data. First,

the Test 2 results (norms given in Table 6.4) very closely match the norms from the

test functions. This implies that the error norm from Test 2 is a good measure of

merit of a kernel (at least globally) for smooth data. Second, since the data matches
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Smooth Data, 12 Norm

a6 Sne Fnc T 0.6

PolI Fnc

Test 2 Results
0.5- -t 0

0 40

Q I ' ±

0. - 0.I t

0/ 0

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18

Kernels

Figure 6.3 Bar Chart for Test3, 12, Smooth Data

Test 2 so well, the same conclusion can be made that bell shaped kernels are better.

Third, although the Gaussian (kernel # 1) is the best in Test 2 and the polynomial

test function, it is fifth best for the sine function. It still performs quite well, but

since it costs more in computer time to use it with only mixed results, the other bell

shaped kernels are more highly recommended for smooth data.

6.2.6 Higher Order Kernel Comparisons. Up until now, this section has

evaluated and compared only standard second order SPH kernels. However, in sub-

section 6.1.2 it was noted that higher order kernels were also possible (in that sub-

section they were fourth order). Since the analysis in this section does not rely on

the order of the kernel, comparisons between the different order kernels is easily

accomplished. This will be done using the fourth order kernels listed in Table 6.1.
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First, the integral test from subsection 6.2.1 will result in 0, since that is the

definition of being higher order. This implies, when compared with the results in

Table 6.3, the higher order kernels should perform better. However, as previously

noted, the integral test is only valid when Ax/h is sufficiently small. Note: the

Super-Gaussian actually has a value of about 0.0018799 when integrated over the

proper domain; see the note in section 6.1.2 for more information regarding this.

Second, the plots corresponding to Test 1 are found in Appendix C (Figures

C.31 - C.33). From these, it appears that the Super-Gaussian (either form) performs

quite well while the Enhanced B-Spline is only fair. For all three, the results sig-

nificantly decrease (even more than standard kernels) when AZx/h becomes greater

than 1.

Third, the Test 2 results, corresponding to the norms described in subsection

6.2.4, are given in Table 6.5. As compared with standard kernels found in Table 6.4,

Name I Type] 1i 12

Super-Gaussian B 0.0191325 0.0429511
Enhanced B-Spline B 0.0882854 0.129977
Super-Gaussian 2 B 0.0191335 0.0431463

Table 6.5 Rel Error Norms for Higher Order Kernel Test 2

these results are initially somewhat surprising. The Super-Gaussian would be fourth

best (3rd for 11 and 5th for 12). The Enhanced B-Spline would be placed in with

the poorer bell shapes and better hyperbolic shapes. Although these results do not

make these overly bad kernels to use, they do not have any advantages over more

standard, lower order kernels. There are two reasons for this. First, since only the

kernel approximation is made better by a higher order kernel, the number of particles

must be significantly increased before the errors in the particle approximation are

of the same order as the kernel approximation (Ax must approach h3). Second, the

6-20



higher order kernels have more elaborate shapes than standard kernels. But unless

enough particles are used to take advantage of that shape, it is just more noisy.

m •Sine Fnc

Smooth Data, !1 Norm Polin Fnc

- Test 2 Resulft

0.06 - - 0.060.07 - 0.07 1

0.03 -- +-~ 0.03

(1) .0 i 0.04 C)

0.03 64 03

0.02 0.02

0.01 0.01

0 0
Gaussian B-Spline Super- Enhanced Super-

Gaussian 8-SplIne Gaus 2

Kernels

Figure 6.4 Bar Chart for Test 3, 11, Smooth Data, Higher Order

Last, the Test 3 results, corresponding to the test functions described in sub-ý

section 6.2.5, are given in Tables C.3 and C.4 in Appendix C. The data from these

is summarized in the bar charts shown in Figures 6.4 and 6.5. The Gaussian and

W - 4 B-Spline kernels are included for comparison with standard kernels.

Since the Test 2 results represents the Test 3 results fairly well, the conclusions

are same. Overall, the higher order kernels do not gain very much, if anything.

They have regions where they are negative and drop off fast when sparsely spaced.

The primary gain would be realized if the number of particles per h was quite large

(Azx/h quite small).
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Smooth Data, 12 Norm Pooyn Fnc

Test 2 Results
0.14 r- .09

0.12

0.07

0.1

S0.8- 006
a0-- . 4--

t 0.02
0.02 -

-0.01

0 C)

Gaussian B-SpIlne Super- Enhanced Super-
Gaussian B-Splie Gauss 2

Kernels

Figure 6.5 Bar Chart for Test3, 12, Smooth Data, Higher Order

6.2.7 Non-Smooth Data. In this subsection, the previous work is extel.ded

to areas near a shock. However, the uniform spacing assumptions still remain. Cop-

sider Figure 6.6 and ,quation (6.1.4)

Co

1, " iI cl

Xs+l

Figure 6.6 Non-Smooth Data Example

f cO if X < X0  (6.14)

c6 ifX> X
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Near the shock

N a N

Z:Ax'fW"' = AxcoIw," +Z~c AxlE,
J=i j=l j=s+i

Let i < s. Because W', is odd, terms from i + 1,...,s cancel with terms from

z - 1,...,2i - s leaving

2i-s-1 N 2i-s-I

A= XxCo E W' + A x C L = (Co-CI) E AxW' .
j=1 j=5+1 j=i

The sum approximates the left tail area of the W' curve. As i --- s the sum ap-

proximates more of the tail, approaching the area under the entire left half of the

W' curve. Note: i _> s just results in the opposite side of the curve. So then fl

approximately equals

f" ,z (c. - c,)j W'(u) du = (co - cl) [W(zi - x,)- W(-h)].

By the continuity and compact support properties of the kernel, f[ is approximately

equal to (co - cl)Wi.. Since the actual value of f! is 0, an estimate of the 11 error

norm is

•_ xIfi = Ico-cil •9xWa = Ico - cI Azx W, - Ax Wo
i=1 i#s i=

The summation term at the end of the last equation is an approximation of the

integral of W, which is just 1. Since c. and cl are arbitrary and independent of the

choice of the kernel, the following is proposed as a measure of merit for kernels under

the 1i norm

min(l- AxWo) = min (1--AXK.). (6.15)
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The same steps can be performed to arrive at the following as a measure of merit

for kernels under the 12 norm

min[W,(1-zAxWo)] = min[hIKo(1.)Ax (6.16)

The values of K(0), 1 - 0.7 * K(0), and K(0) * (1 - 0.7 * K(0)) for the 18 kernels are

shown in Table 6.6. Note: 0.7 is used since it is an average value for Ax/h in this

study.

# Name [ Type K(0) 1 - 0.7K(0) ]K(0)(1 - 0.7K(0))

1 Gaussian B 0.56419 0.605067 0.341373
2 W4 B-Splines B 0.666667 0.533333 0.355556
3 Cosine B 0.575169 0.597382 0.343595
4 Exponential H 0.500556 0.64961 0.325167
5 t - 2 Exponential H 2.250277 -0.575194 -1.294346
6 l/X,2 H 0.917133 0.358007 0.328340
7 1/X,4 H 0.837880 0.413484 0.346450
8 l/X,10 H 0.78646 0.449478 0.353496
9 -X 2  H 0.75 0.475 0.35625
10 -x - e-' P 0.403745 0.717379 0.289638
11 4 - X2 P 0.375 0.7375 0.276563
12 8 - X3 P 0.33333 0.766667 0.255556
13 K - 2 Gaussian B 0.846553 0.407413 0.344897
14 L Gaussian B 0.785348 0.450256 0.353608
15 Q Gaussian B 0.643998 0.549201 0.353685
16 T Gaussian B 0.580569 0.593602 0.344627
17 Quartic-1 B 0.625 0.5625 0.351563
18 Quartic-2 B 0.416667 0.708333 0.295139

Table 6.6 Kernel Value at 0

The data in Table 6.6 shows that the results are different under an 11 norm than an

12 norm. For the l1 norm, based on the column 1 - .7 * K(0), the hyperbolics (H)

perform the best while the parabolics (P) perform the worst. It should be noted

that many of the numbers are quite close, but not as close as for the 12 norm. From

the last column, almost all kernels delivered similar results for the 12 norm. The
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parabolics are slightly better (with one exception for kernel 5), but the rest are

then roughly the same. These ideas will now be verified against the step function

from Test 3. The results are found in Tables C.5 and C.6 in Appendix C and are

summarized in the bar charts shown in Figures 6.7 and 6.8. The lines with small

boxes represent the information above and the bars are from test 3 (step function).

Non-Smooth Data, 11 Norm

-M step mn
1 .8 T - 1- ,7K( 0) T" 1-

1.60.5

0.06

0.4

0.2o €-05

0 -. 0

0.6

0.4

-!.5

0.2

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18

Kernels

Figure 6.7 Bar Chart for Test 3, 11, Non-Smooth Data

Some general conclusions may be drawn from these figures. First, the K(O) results

(data given in Table 6.6) match very closely the norms from the test functions,

especially 11. This implies that the norm predictors from the K(O) work are good

measures of merit of a kernel (at least globally) for non-smooth data. Second, based

on the measure of merit and data in the figures there does not appear to be any

class of kernels that are significantly better than the others under both norms for

non-smooth data. The tK - 2 Exponential has the least error. However, due to the

shape of this kernel (very sharply peaked) it is probably not a very good choice.
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Non-Smooth Data, 12 Norm

Step Fnc

25-4-- 0.5

20

I v4

I---)

0.5 -L.5

0 .

I 2 3 4 5 6 7 8 9 10 11 12 13 i4 15 16 17 18

Kernels

Figure 6.8 Bar Chart for Test3, 12, Non-Smooth Data

Third, since the two kernels with n larger than 2 do not perform significantly better

than the others, it is recommended to use a kernel with K equal to 2.

6.2.8 One-Sided Kernels. Up until now only kernels that were even or

symmetric were considered, however there are other possibilities such as asymmetric

functions. Although there are an unlimited number of possible shapes, only trun-

cated and condensed one-sided kernels are considered here. The term truncated, is

used to indicate the same kernels from Tfable 6.2 given earlier, but with only one

side. The other side is taken to be 0. Of course, this makes the kernel discontinuous

at zero and must, therefore, have the (derivative defined at zero (done later). The

term condensed, is used to indicate the kernels given earlier are shrunk down to half

their width and then shifted to one half plane or the other. The opposite half plane
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is zero. Also note, that the normalization constant for these one dimensional kernels

is exactly twice that given previously.

Following the procedure from the uniform space, smooth data analysis earlier

for these new kernels yields

N

j=1

x= a+IAxi Axi = AX.

Assume, without loss of generality, K'(u) is a backward difference kernel so that

K'(u) = O, u < 0.

(1) Assume f is constant. f = c = f' = 0.

N C4AX N A
0 E AXj fj W = h2 E K' (i - A) (6.17)

j=1 j=1

Therefore, K'(0) = - • K'(l-) to exactly model the derivative of a constant

function. This should be zero for the condensed kernels.

(2) Assume f is linear. f = cx + d =• f' = c. Also assume that K'(0) is

taken to be the sum above. This then yields

N AX NA
c A •,•xj fW w -- Z(cxi + d) K' (i)-)

j=1 j=- l

NN

cAx N dAx N g
h E~l- xj Kj' + h E Kj'

-h-'-xi N•K! (subtract 0)
h j==

=c E_ (xj - xi) K,,.•

1=1

6-27



This check is exactly the same as the earlier measure equation, with a coefficient of

2 missing. However, since the normalization constant (hidden in K) is twice that

given earlier, the previous measures of merit from Tests 1 and 2 should work for

one-sided kernels.

Although one-sided kernels are a little cheaper to compute with, they only give

results of order h instead of h2 . This was reflected in Test 3 type results being worse

for one-sided kernels on smooth data. However, near shocks they should be better

since a one-sided kernel is analogous to backward or forward differences (ie. upwind

schemes). Consider the problem from Figure 6.6 and equation (6.14) again. Near

the shock

N s N
" = fAxyif W! = Ax C" W! + AXc 1, w'

Ij ijIJ •
)=1 =1 i=s9+l

Let i < s. Because W' is backward, the second term is just 0. The first term equals

zero then if K'(0) = - = K'(I•)

Now let i > s + 1, then

N

0 . AXcoZW! +±AcX C W!' = (Co-CO)ZAiXW:.
j=l j=1

This is essentially the same as the two-sided kernel check in the area of a shock.

So a one-sided kernel should give the same results as a two-sided, error-wise, on

one side of the shock, but should be better than the two-sided on the other. Note:

a truncated one-sided kernel in the other direction is exactly opposite to the one

studied above.

The conclusion is that for non-smooth data, one-sided kernels should be better

near a shock. These results may be seen in the bar charts shown in Figures 6.9 -

6.12. The lines represent the information above and the bars are from Test 3 (step

function).
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Non-Smooth Data, 11 Norm, One-Sided Truncated Kernel
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Figure 6.9 Bar Chart for Truncated 1-Sided Kernels, 11, Non-Smooth Data
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Non-Smooth Data, 12 Norm, One-Sided Truncated Kernel
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Figure 6.10 Bar Chart for Truncated 1-Sided Kernels, 12, Non-Smooth Data
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Non-Smooth Data, I1 Norm, One-Sided Condensed Kernel
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Figure 6.11 Bar Chart for Condensed 1-Sided Kernels, 11, Non-Smooth Data
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Non-Smooth Data, 12 Norm, One-Sided Condensed Kernel
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Figure 6.12 Bar Chart for Condensed 1-Sided Kernels, 12, Non-Smooth Data

The figures indicate that the one-sided kernels are all about the same and comparing

with earlier results do not perform better than symmetric kernels. Further, the mea-

sure of merit does not appear to work as well for these kernels (especially condensed).

One thought on this is that many more particles are needed with a one-sided kernel

than a two-sided to obtain good results. Since additional particles were not added,

the results are all quite poor.

6.2.9 Riemann Shock Tube Problem. The Riemann shock tube problem is

well known, and not described here (see LeVeque (32) or Smoller (57)). Because it

is such a good test for shock problems, it is used both here and again in Chapter

VIII. The test case in one dimension uses a line of equally spaced particles on [0, 11

with a discontinuity at 0.5 and the values for all the particles on either side of the
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discontinuity are: (ul - left, u, - right)

PI = 1.0 p, = 0.125

v1 = 0.0 v, = 0.0

el = 2.5 e, = 2.0

P 1= 1.0 P, =0.1

Also the gas constant, F = 1.4 is used. From earlier in this chapter, and the cor-

responding plots in Appendix C, as -' varied, the Test 1 results fluctuated around

the desired value (1) for most of the kernels. Using MathCAD, an initial ratio was

selected for each kernel near 0.7 that was best for each kernel individually. The

reason for selecting 0.7 is there will be two neighbors on each side of any particle

and this is a fairly popular value in the literature. The initial values are found in

Table 6.7.

The column labeled 1.1*Ax/h in Table 6.7 is used for determining M.h = max(Ax/h)

as described in the smoothing length section earlier (equation (6.7)). Although a

variable h formulation was used in the tests, this ensures that h is not allowed to

become too small. The values for the coefficients of artificial viscosity are (2.5, 2.5)

and for the coefficients of wall heating (0.5,0.5). These are fairly standard values.

This test was performed on half of the kernels. Based on the analysis so far,

it was predicted that the bell shaped kernels would perform adequately while the

others would be questionable. Hence, only one hyperbolic, two parabolics, and six

bell shaped kernels were chosen to test. Most of the bell shaped kernels performed

admirably, while most of the rest aborted early in the calculation. The reason is

this is a very sensitive problem, especially when using SPH. Extra noise added by

poorer kernels can easily add to growths in shock spikes causing negative density,

negative energy, or particles to cross. The results at 1 microsecond for one of the

better calculations is shown in Figures 6.13 and 6.14.
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# Name Type I ax/h nph 1.1 • *x/h
1 Gaussian B 1.00316 .996849 1.103476
2 W4 B-Splines B 0.689898 1.44949 0.758888
3 Cosine B 0.673815 1.484087 0.741197
4 Exponential H 3.0 0.333333 3.3
5 Pc - 2 Exponential H 0.666667 1.5 0.733333
6 1/X,2 H 0.757363 1.320144 0.833099
7 1/X,4 H 0.777197 1.286486 0.854917
8 1/X,10 H 0.791098 1.264131 0.870208
9 _X2 H 0.799783 1.250274 0.879761
10 -x - e-' P 0.807503 1.238386 0.888253
H 4 - X2 P 0.81096 1.233106 0.892056
12 8- X3 P 0.816495 1.224747 0.898145
13 ,x - 2 Gaussian B 0.666667 1.5 0.733333
14 L Gaussian B 0.666667 1.5 0.733333
15 Q Gaussian B 0.739626 1.352035 0.813589
16 T Gaussian B 0.769779 1.299073 0.846757
17 Quartic-1 B 0.685996 1.457735 0. 75459 6

18 Quartic-2 B 0.733263 1.363767 0.806589

Table 6.7 Initial Particle Spacing for Shock Tube

6-34



Density vs. X
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Figure 6.13 Shock Tube Results, Selected Kernel
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Internal Energy vs. X
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Figure 6.14 Shock Tube Results, Selected Kernel
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Error norm results for the selected kernels are shown in Table C.11 in Appendix

C. For more details on the calculation of the errors see equations (8.10) and (8.11)

and the surrounding material in Chapter VIII. The data in this table is more easily

seen in Figures 6.15 and 6.17.

Density Relative Norm Comparisons
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0Kern 164.O El .........
El Kern 17

1 -norm 2-norm

Figure 6.15 Shock Tube Results, Density Comparisons

Some general conclusions may be drawn from Figures 6.15 and 6.17. First, when

using kernel 2 (the B-Spline), the results are slightly better when using the recom-

mended starting ratio of 0.6899,instead of 0.6667 (kernel 2a). Note: a starting value

of 2/3 is common in the literature. Second, the Q-Gaussian (kernel 15) performed

the best, but the results for these five kernels are so close that all should be con-

sidered equally good. Third, using hyperbolic or parabolic shaped kernels is quite

risky, the problem may abort, and they are not recommended.
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Velocity Relative Norm Comparisons
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Energy Relative Norm Comparisons
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Figure 6.16 Shock Tube Results, Velocity and Energy Comparisons
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Pressure Relative Norm Comparisons
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Figure 6.17 Shock Tube Results, Pressure Comoarisons

6.3 Conclusions

Much of the data and information in this chapter speaks for itself. However,

in this last section some comments are made regarding the data and, in particular,

the better and poorer kernels.

* tc - 2 kernels. Taking a kernel with a wider r., such as the Gaussian, and

modifying it to make r. smaller seems reasonable. However, the process used

in the ic - 2 Exponential and x - 2 Gaussian is not very good and should be

avoided because the resulting kernel is too highly peaked.

* For smooth data almost any bell shaped kernel provides good results. Of the

nine studied, the K - 2 Gaussian was the poorest. Although the Q Gaussian

performed the best, most of the others are so close as to be considered tied for

best.
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e Overall the Test 2 equation appears to be a quite good measure of merit for

smooth data kernels. It matched the test data well and is easy to calculate

using some math package such as Mathematica.

o For non-smooth data almost any kernel provides acceptable results. The

parabolics performed slightly worse, but it is not clear if it is a significant

difference.

o The K(O) checks for non-smooth data appear to be a fair measures of merit for

symmetric kernels on non-smooth data. Since most kernels perform roughly

the same for non-smooth data, it is difficult to determine the exact quality of

this measure.

o One-sided kernels in general perform poorer that two-sided in non-smooth areas

and much worse in smooth areas. This is not obvious as those kernels lead to

schemes analogous to upwind schemes. which are usually quite good in finite

differences. However, for now, based on this research, using one-sided kernels

is not recommend.
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VII. TIME SCHEMES

This chapter addresses temporal discretizations that can be applied with the

SPH spatial discretization for the complete implementation of the method. It re-

lies on some of the analysis performed in Chapters III, IV, and VI in developing

these schemes. The discussion in the previous chapters has only involved the spatial

derivatives and function approximation aspects of SPH. These are the parts that

primarily make up SPH, but they leave a system of ordinary differential equations

(in time) to solve. Therefore, a time scheme must be added to the previous analysis

to discretize the Euler equations completely.

In this chapter both higher and lower order schemes are developed. The higher

order schemes are Lax-Wendroff, Central, and Shu; all of which are second order in

time. The lower order schemes are Upwind and Lax-Friedrichs; which are first order

in time. The main purpose of this chapter is to simply introduce these ideas to SPH

and show that several times schemes are available. The Lax-Wendroff is probably

not going to be very useful for production type SPH computer codes, but should

prove quite useful in algorithm development. The Central and Shu schemes are

both good choices for the larger problems. By themselves, the lower order schemes

are probably not of much interest; however, they are an integral part of the hybrid

schemes developed in Chapter VIII.

There are several variations to the Euler equations that may be used in HVI

problems; for the analysis in this chapter a one dimensional form given by Anderson

(1) or Zukas (72) is used:

Dp 8v
Continuity Equation : - (7.1)

Dt
Dv 10lP

Momentum Equation: Dv- p (7.2)
De _P av

Energy Equation : - - pv (7.3)
Dt Pax
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Particle Motion Equation D- = v. (7.4)

The discussion to follow also refers to the general conservation equation and the one

dimensional, first order wave equation; they are respectively

Ut+ [f(u)]+ = 0 (7.5)

ut+au, = 0. (7.6)

The work in this chapter concentrates on three explicit methods. However, im-

plicit, predictor-corrector, or additional explicit (such as Runge-Kutta) type schemes

could also be applied. The cost for the implicit methods probably make them un-

usable for many of the large scale problems associated with HVI. This is because in

SPH each particle has a variable number of non-zero contributing neighbors. Thus

the use of banded solvers is eliminated and full matrix solvers are often quite ex-

pensive. Some preliminary experimentation was done with a Heun second order

predictor-corrector, but the initial work showed no significant improvement over a

central time scheme (described below). Hence, further development of this method

was not done at this time. Lower order explicit Runge-Kutta methods are essentially

what is being considering. The forward Euler method is not used because it is first

order in time and forward time/central space is often treated as unstable in finite

differences (although it is actually conditionally stable). So forward time/symmetric

kernel space would probably not be a good choice in SPH. Higher order Runge-Kutta

methods could be used, they just require additional function evaluations and storage.

This might be a problem for large scale problems.

So the effort is concentrated on the three main schemes: Lax-Wendroff, Central,

and Shu. All three are used in finite differences, often with good results. Central

time has been in use with SPH since its inception while the other methods are being

used here for the first time with SPH.
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7.1 Lax- Wendroff

This scheme was first developed by Lax and Wendroff (29) in 1960 and it uses

a Taylor series expansior approach. In the finite difference literature it is one of the

most prominent second order schemes. The scheme is introduced here using the first

order wave equation and then derived using the SPH form for the Euler equations.

7. 1.1 First Order Wave Equation. The Lax-Wendroff finite difference form

for the first order wave equation is

= n aAt a 2 At 2

, 2Aux (ui+1 - i-) + 2Ax 2 (ui+l - 2u + u,_) (7.7)

This method is second order in both time and space, can be written in conservation

form, and is conditionally stable. As seen above, the first order space derivative uses

a central space form. The same flavor may be obtained in SPH by using a standard

symmetric kernel. The second order space derivative is also a central difference form.

This too is analogous in SPH to using a symmetric kernel, but requires. W' to be

smooth and have compact support. Most of the bell shaped kernels discussed in the

previous chapter fit these requirements quite well. The SPH form of Lax-Wendroff

for the wave equation is defined as

=N a2 At 2 N
= - a~tZEAxju'W! + 2 1juLx. (71.8)

j=1 j=1

Note that W and W can be the same kernel, but do not have to be. An intriguing

variation is obtained if the SPH function approximation is used for u!' in equation

(7.8) and just one kernel is used. Collect terms to obtain

N [ , a 2LAt 2  1
u = yAx u Wj - aAt W + 2 W! (7.9)

.j=12
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The formula in brackets in equation (7.9) is simply a Taylor series expansion of

1V(.', - Xj - aAt) to three terms. This makes the right hand side of equation (7.9)

equivalent to the SPH function approximation for ui using uj at time t, and x at

time t, 1+ in the kernel.

In order to extend this work to SPH one needs to look beyond the formula for

Lax-Wendroff given earlier to the idea behind the method and how it was derived.

Quite simply, u'+l is expanded in a Taylor series around uý'. The first order time

derivative is replaced by a spatial derivative according to the PDE. For the second

order time derivative, take the derivative with respect to time of the PDE and rear-

range terms until a form with only the function and spatial derivatives is obtained.

Of course, this is rather simple for a linear PDE, but for a non-linear system it is

much more complicated.

7.1.2 Euler Equations. Following the expansion and reorganization ideas

described above for each of the conservation equations, SPH Lax-Wendroff forms the

Euler equations may be developed.

Continuity Equation

n+ =P + AtD- + Dt2 Dt2p D + O(At()

Dt D P -)

D 2P D(DvV D9 (_a v) a p9 (aD(a
Ot2 - t Dt t D-"- D zJ t ax -t -ax)

= P -P~ \x - pv9- a4= X p )-p -a) -avx Y)±Xv_

Iav\ 2 _Pa(aV) dV a (8)± a V\ aV

axaxOx Dtaa
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O v 2 _ a -= = p 2 a , + d I O l

Use the forms derived above to obtain for the continuity equation

-+ at )I t (t) (la )] +O(At3).
=& pin + At P 2 +v 2 (7.10)

Momentumn Equation

Dt"., At 2 D2 ,n

-1tDt + 2 _Dt2  +O(At 3 )

D2, D Dv D ( 0~_D~d D (aP)
- D(D) - la kpx) - Di 0: p ýt

1 /'OP\ Dp 1_ I(aOP v a (aP\)
p (0 a(t pax 01 px 0:

_-I a) a i a(p - va (7.11)

aP aPOa P OPe a)(OP Ov OP)
at a OP t + de--t Op 9Pd axO9

+(a)P\ a'Pv Oe
e I T- I v Ia

~OP~(02 \( v 0 P) (- 2 LaPv __vOP

axae 0:'X a

+1- --p a I ----- v - -al vI (7.12)a eJ T: p 0 TX-p0:52  X:20:]

Use equation (7.12) in (7.11) to obtain
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+ ("P (") +O+ P(OP) (0,(ap ( iP (,, + (OP) (d +(. lp)

P '6d2 P dxd P)+ d2P

OPd OPx P p xdx P a ~e~

Ox -a +Op-d jx
(al()(de) =ap (adP d XP (P ep

-P Oxf: 1k- a Ox,/ kde}kx) 7.4

No use eq atio (71) ineqatin7.3 a nd siplf tofn

+ ( 7j lp ±- )(6+(, ) Ox~e (7.14)

Use the forms derived above to obtain for the momentum equation

T tX 1 n 2  OP POPf
-. I P

0'(a ) a -- ~ a ] + O(At 3) .(.5

+p (7.15-)p

Energy Equation

=Deni At 2 D2,n
,n~l + _Dt + O(At 3)

De P 4V

Dt p TX
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Wt = D - = D - P diŽ _ - O P D Oc-
) -2 D- D, D t = pox) D+ dx p t kO)

= -- (DP) ( -+PR)( -L P(o. jI,;)1)

P 0 P2 Ot pPi( ( 12I DP) (ov.• _ (o..v 2 _ o. eo + r i •v
p X Ox P\d'

p \ft~Xpd , pnJ7 •,p0dX1i(DP) (dDP- P0 (IOv2_P\o(v p(?

- -7d) (DP) +P ( y-) (7.16)

D)P 0 OP O'P =('OP (op + 0p) (OP \dfe + v \
O t -a :-x •H +- - It + I "X- O I ( + x

( P -£ (OP) IDc) (7.17)
op~U Dt) 0C eKDt

Use equation (7.17) in equation (7.16) to obtain

D l( ) (-o"') 1 ( o() ( (1 PP O
D t/ - 2 d• \ ax px pxx

Use the forms derived above to obtain for the energy equation

p+ - + O(At 3). (7.1s)

One SPH Form. Based on the three equations developed above, (7.10). (7.15).

and (7.18) the SPH equations may now be derived for these. Since for any derivative

there are many SPH forms, there cannot be just one Lax-Wendroff SPH form. The

one included here uses symmetric forms of the equations where possible to help
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maintain conservation.

-p~i Vý -! m i(v ~v).' (7.19)
£ ax plý j-x gx I I J : 3~

n2 n a I 1OFi- I 1 a2(pp) Pa2pl n a~ +(1:aE '

S=1 Pi J ,(3L 1a

M r /p p pn P)]

S3 T h + =Lapm  (7.21)

j=1  (j P

n6T  - r-im v 1 I pnSi ax -:t EZm nij-~)(g-7 (7.24)

Pfll = Ž9t si2 + L~2  + [S p +S;] (.5

n -2 I t3 +,2(p p r rI a 909 N Mi (aV7~

ir t \ lP
2 +1 NŽn) '1 2 Il 8P' r'*iuri/

±5 Pi~1) a'j p p)2 a (7.27)

=~ n +X l zý iv 2- j (7.28)

2 2
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7.2 Central Time

The second time scheme considered is much simpler: using the central time

approach. This is a rather easy to apply and a relatively old technique in SPH. It

can be derived using either Taylor series expansions or the midpoint quadrature rule.

The scheme is introduced using the general conservation equation and then derived

using an SPH form for the Euler equations.

7.2.1 General Conservation Equation. The central time finite difference

form for the general conservation equation is

un+1 = u n-1 - 2At f(un ) ,, + O(At 3 ). (7.29)

This method is second order in time, can be written in conservation form, and is

conditionally stable. The method is derived below using a Taylor series form. Using

the two Taylor series expansions

"n+1 = Un + A-t (Un)t + At, (u )t, + t(U ),,, (7.30)

2 6

"u -1 = u" At (un)t + -( u n)tt -- (U)ttt + .... (7.31)
2 6

Subtract equation (7.31) from (7.30) to obtain the central time form

un+1 = u'n-1 + 2 At (un)t + 2-t 3  + ... . (7.32)

Substituting the general conservation equation (7.5) into equation (7.32) for the

temporal derivative term results in the form given earlier in equation (7.29).

7.2.2 Euler Equations. The final form of this method has just a first

order time derivative which is replaced with a spatial derivative using the general

conservation equation. So there is nothing special to applying this technique to the
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Euler equations or in SPH. Hence, any SPH formulation for the spatial derivatives

will work by directly substituting it into the general form (7.29). As with other time

schemes, maintaining conservation is important, so symmetric forms of the SPH

equations are usually best.

It was discovered that a common practice in SPH is to not use a true central

time for all field variables as it is more costly, especially in memory requirements.

Two variations are investigated which will be called approximate central time and

near central time as well as a full central time approach. For full central time, two

levels of some of the field variables are needed (at least p, v, e, and x). This should

be the only additional cost of using a full central time approach; still it is sometimes

not used. The other two forms use only one level of storage, but two passes through

the particles. The first for velocity updates, the later for the remaining updates.

This does not add any cost, just some additional code. This method is known as

the approximate central time. The near central is the same as the approximate

central except it does a correction for particle position between the two passes and

recalculates the kernel for the second pass through the particles (-;). It was also found

that some people use an even simpler form with only one storage level and one pass

(which is called faux central time here). However, this method is not recommended

as it is essentially a forward time/central space type method (which is only first

order and unstable for the usual time restriction, At/h < constant). These forms

may be more easily understood symbolically

Full Central Time: Vn+1 = vrn- 1 + F1 (pn,en, xn)

p n+l = pn-1 + F 2 (vnXn)

en+1 = en- 1 + F3(pn,en,vn,x )

Xn+l = Xn-1 + F 4 (vn)

Near Central Time: v = vr- 2 + Fi(p -1,e-ln,xn- 1)

pn+1 = pn-1 + F2(v,&i)
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e = e"- 1 + F3(p"-, e- v",ie)

xn+I = x -I + F4 (v')

Approximate Central Time: Vn = v"- 2 + F 1(p n- 1,e-1, X"-1)

p n+ -= pn-I + F 2(vn,,x n-I)

en+1 = e"- 1 + Fr-p1,e 1 ,vn,x'-1)

Xn+1 = x'-I + F4(vn)

Faux Central Time: Vn = v'- 2 + Fi(p'-I,e"-I,xn-1 )

p n+I = p -1 + F 2 (v -2,r,- 1 )

en+l = en- 1 + F3(pn- 1,e n 1,v n2,X 1 )

Xn+l = x-I + F4 (v- 2 )

The following is proposed as the complete discretization for full central time

N
pn+1 = pf-l + 2Mt m (vt' - v_ ) W'(Xn -_ X) (7.33)

j=1

•+ = v-- 2At m, (E;+ ;_ W'(_ - x;') (7.34)

= \ (pý,)2 (p,ý)2 )

n+1 n- V! )Wi,

+ = 1 + 2 Atv!. (7.36)

7.3 Shu

The third scheme considered here was first developed by Shu (55) in 1988

and designed to be used with Total Variation Diminishing (TVD) finite difference

schemes. Actually, the version presented here is just part of an entire class of TVD

multilevel schemes proposed by Shu. This particular form was chosen out of that

class because it was only 2-level and second order. Although this form rarely appears

in the literature for finite differences, it seems to have some good potential. To my
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knowledge this is the first time this scheme has been applied in SPH. This scheme is

introduced using the general conservation equation and then derived using an SPH

form for the Euler equations.

7.3.1 General Conservation Equation. The Shu finite difference form used

here for the general conservation equation is

4 1 ni8~ 2

+= -Un - - 8tf(un), + tf(u ) 7.37)
55 5 5

This method is second order in time, can be written in conservation form, and is

conditionally stable. However, it is not readily apparent that the method ib second

order or that it is even consistent. Hence, the method is derived below. Note: lie

scheme is derived differently from Shu who derived the entire class as a whole. Start

with the following three Taylor series expansions

" n+ = + At(Un)t + At 3 nu'•+ = u" + At~u= + -j---(u')" + -6--(u + ... (7.38)

" = U-I + 2 At(Un-()t + (2zAt) 2  (2zt)3 (Un- +
2 U (u-)tt + 6 ( ) +.-. (7.39)

u"'= u"- At(u"), + --- ( )t 6 () + ... . (7.40)

Subtract equation (7.40) from (7.38) to obtain the central time form

= ~ ~~U~) 2At 3  ,
un+I = un-I + 2,At (u), + 2 (Un )t+... . (7.41)

Form the following weighted sum: • * Eqn (7.38) - - Eqn (7.39) + - Eqn (7.41)

to obtain

4u n+ 1-u' + 8At (un)t - 2 At (Un')t + E (7.42)5 5 5 5'

where E = 2 At 2 [(un)tt - (un-I)] + - -4At3 [(un)ttt - (un- 1 )ttt]l + O(At 4 )

5 T5But, (un)tt - (un-1 )t = At (u)ttt + O(At2 )
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and (Ul)ttt - (u"-I) = At(u,)tt, + O(At 2 )

so E -- -2 At 3 [(u") + O(At)] + At4 [(Un)ttt + O(At)] + O(At 4 )5 1
= 2 At 3 (U,)ttt + O(At 4 ). (7.43)

5

Substituting the general conservation equation (7.5) into equation (7.42) yields the

form given earlier in equation (7.37). Also, as seen in equation (7.43), the method

is consistent and second order.

7.3.2 Euler Equations. As with central time, this method ends up with

just a first order time derivative which is replaced with a spatial derivative using the

general conservation equation. So there is nothing special to applying this technique

to the Euler equations or in SPH. Hence, any SPH formulation may be chosen and

directly substituted it into this form. As with other time schemes, maintaining

conservation is important, so symmetric forms of the SPH equations is usually best.

With that in mind, the following is proposed for the complete discretization

n+ 4. n ,_ +N [8
Pi A Pi + Pi + At i , (v'n - v) W'(x!' - xn)

2(Vn-1 - Vn1)]w (7.44)n-1
= ~l

25/ Pi Ei 1 \ fli flil(7.45)2= n + -1n n[+-+V W ( --) )- (7.46)5 5+ 1(p7)2 (p)
j=1

- (2_-i + (p_))w'(x!'-'- (7.45)
,n+, 4 n 1 n_, I N [8 ( n Pin (v. n W n n

=-e. + -e. + -At Mi _L_(y) + _(v'•-o•W(x•-x
2 j=, p )

(n- 1 )jl2 + (p!1_,)2) ( VT- j ) ' x n- ] (7.46)

X n I n + 1 n - + , [8 V n 2 Vn-,1x;x+ =X •-?+•• t - , ] (7.47)
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7.4 Lower Order Methods

Since three second order time schemes were just developed, and SPH is usu-

ally second order in space, to develop a lower order scheme now seems to be going

backwards. However, the hybrid methods discussed in the next chapter make use of

both higher and lower order schemes, so the basic information will be provided here

on two lower order ideas. Since SPH was developed as a higher order method, lower

order forms were not already available. So two methods were chosen from finite

differences, a Lax-Friedrichs type scheme and an upwind scheme.

7.4.1 Lax-Friedrichs. The first lower order scheme comes from the idea of

the Lax-Friedrichs method. The general idea is to use a forward Euler time scheme

(first order) with a central difference space scheme (second order). However, since

that scheme by itself can be unstable under many time restrictions, a correction is

made. The variable evaluated at the previous time step is replaced by a central

average (second order in space). This correction makes the method not only condi-

tionally stable, but monotone as well. This idea was introduced earlier in the Total

Variation section in Chapter IV. Written for the first order wave equation (7.6), the

finite difference form is
n Un • n

u u 2'+ + + At ( u++ i-.) (7.48)

As seen above, the spatial derivative is a central difference form. This is more or

less analogous in SPH to a symmetric kernel. Also in Lax-Friedrichs the previous

time step is replaced with a central average. The SPH function approximation with

a symmetric kernel can be used for this version. The resulting form for SPH is

N N

ui+1 = u + At E• Axiun W!. (7.49)
.j=l j=l
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To see that this method is consistent, use a Taylor expansion in time

n+1 = UAt
2

= , +At(u'),+ - (u ,)tt + .... (7.50)

Noting from equation (7.6), ut = -au, and using the errors obtained in Chapter III

for the SPH function approximation and derivative yields

N

iu' Axju' i I + O(hf,fh Ax)
j=1

N

(u, = -a(u')• = -a jZ x ju, + O(h ,h Ax).
j=1

Substitute these into equation (7.50) to obtain

u = AX3jUWij +O(h2,hAx) +At -a 1'oAziu'W +O(h2 hAx)
1ý Il j=l

+ O(At 2 )
N N

u7+1 = ZAxiu'1 - aAt ZAx~u7I% + O(At2, h2 At, AthAx, h2 , hAx) .
j=1 j=1

Note: this shows the order of the local truncation error; and one order in time is

lost for the global error. So, the SPH Lax-Friedrichs form is consistent for the first

order wave equation and is first order in time and first order in space (if At • Ax).

As discussed in the Total Variation Section in Chapter IV, the Lax-Friedrichs

method is in a category of very smooth techniques known as monotone methods.

These methods are all total variation diminishing (and stable). To show that this

method is monotone, let 7"(ui) be the right hand side of equation (7.49). Following

LeVeque (32) it is sufficient to show

0-(u_) > 0 V k, i, u,,gun -

to prove a scheme is monotone. Consider two cases: k = i, and k - i.
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k=i.

= Ax, (W(O) - aAt W'(0))

W(o) > 0 usually, and assumed here

W'(O) = 0 usually, and assumed here

du!' - AxiW(O) >0

k#i

.u7

Wi3 > 0 usually, and assumed here

If the kernels are chosen such that K'/k is bounded above by a positive constant,

say B, then for 'a' positive and At chosen sufficiently small

K'
S< BK -

a W? aAt K' < --- B < 1

MW, h \KJ h

W'j - aAt Wj' > 0

=* -i > 0.
K'

Hence for r < B and Si < 1 the SPH Lax-Friedrichs method is consistent and

monotone (conditionally). Note if 'a' is negative K'/K needs to be bounded below

by a negative constant. As shown in Chapter VI, there are several kernels that work

quite well and are similar to each other. For example, a combination such as the

T-Gaussian for iW and the B-Spline for IV will result in B = 2.5 creating a CFL

number for this scheme of 0.4.

7-16



This scheme can be extended in two very useful ways. First, using the general

conFrvation equation (7.5) instead of the first order wave equation yields

N N

un+ = AX,_ n uW V, + At -AXJ f(uU)W t . (7.51)
j=1 J=1

Second, by applying the key step, averaging the variable at the previous time step,

this notion can be extended to any time scheme; not just the forward Euler. This

second generalization can help other time schemes become more monotone, but does

not guarantee that they will be truly monotone. However, this powerful generaliza-

tion has much promise and to avoid confusion with a true Lax-Friedrichs form, the

process of averaging the field variable at previous time step is referred to simply as

Field Averaging.

One possible application of these ideas to the Euler equations is

n Pd• ( dP d(pv))-• x

p7+1 = n + At _p vn = P7+ At V- ,

9_ d~x). x ' x'9
N

MI [mJi4 + At (vn - vn)W,] (7.52)
j=1

= 1 + A 1 ) vn ' - A t d--Pp n

Vtý + t (_P49X dx +P 2 daX

N /nipin pn
mj, [+ _ (7.53)

n,1 P vA Pn

e7 = At= en+" d (I)

+ a cx a~x},
N n + At ( Pn nddes)n W __

S•-mj (7.54)
p=, L ,(p,ý)2 (pn)2)

Xn'+1 n + tVX (7.55)
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7.4.2 Upwind. The second lower order scheme considered is motivated

by upwind finite difference schemes: in particular, forward time/forward (backward)

space. Shown for the general conservation equation

u = U - At [f(u+)AXf(u)] (7.56)

The upwind scheme is relatively easy to apply since the spatial derivative is analogous

to a one-sided kernel function in SPH. Two types of one-sided kernels were discussed

in the previous chapter: truncated forms and condensed forms of a symmetric kernel.

A truncated kernel is where a symmetric kernel is used for xi - x, positive (or

negative) and the kernel is 0 otherwise. A condensed kernel is where a symmetric

kernel shrunk down to half its width and then shifted to one half plane or the other.

The other half plane is 0. So the SPH upwind scheme for the general conservation

equation is

uU+ = -_At [f;uni)W(O) + AXj f(u'] (7.57)

The extra term in the spatial derivative (involving ý;) will be discussed and derived

below. Following the work done in Chapter III, this is now shown to be a first order

approximation. Let

<f'(Uo)> = fA(Uo) = J f'(u) W(uo-u,h)du.

Expand f'(u) about u = u., let x = (u - uo), and use the normalization of W to

obtain

f '(uo) = nf'(u) W(Uo - u, h) du f'(x + u,) W(-x, h) dx

= W(-z,h) [f'(uo) + x f"(uo) + - dx
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= f'(uo) j W(-x,h) dx

?. + f"(U") j .W(-x, h) dx

I .+ X2 W:€(-x, h) f"(o dx
2 + "

= f'(u•) + E. (7.58)

where

E. = f"(u°) x W(-x, h) dx + JX 2 W(-, h) dx

It is possible for the first integral in Eo to be zero, as in the symmetric kernel case,

but only if W is allowed to be negative over part of its support. This is not usually

done, and would make a distribution theory analysis much more difficult. Hence,

that case will not be allowed at this time. So dropping the second term shown in Eo

(as the error will go as the first term) yields

E= x W(-x,Ih)f"(•o)dx, (7.59)

for . To obtain a bound on the error term E,, define

eo = /C sup If"(•),

where f1, is the Kh wide region around Uo. Then noting that the kernel is non-zero

only when Ilx < ich, the bound is

JE1= x W(-x,h)f"(,do) dx• : xlW(-x,h)llf"(to)ldx
i£ h W(-x,h) eo dx = eoh W(-xh)dx = h (7.60)
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Therefore,

fk(uo) +O(h) = j f'(u) Wi-(uo-u.h)du +O(h). (7.61)

Following procedures similar to Chapter III, integrate by parts and then replace the

integral by a sum. For the condensed kernels these steps will be the same as the

symmetric kernel case. But for the truncated kernels, the integration-by-parts step

creates an extra boundary term. For the forward kernel that is -f(uo)Wi"(O) (the

backward will be positive). Since for the condensed kernels W(O) = 0, the results

can be generalized for either type of kernel as

N

f'(ui) = ý;f(ui) W(0) + E .xj f(u') Wi'j + O(h, Ax) (7.62)
3=1

where ;= { +1 if W(u) = 0 for u < 0 (backward)

1 -1 if W(u) = 0 for u > 0 (forward) .

Note, from Chapter VI for these one-sided kernels,

N

W(0) = - WiA i . (7.63)
j=1

But note

N

- Ea xj Wi' W'(x, - x)dx = ;[W(O) - W(Kh)] = ;W(0)
j=1 in

So the extra term developed here and that derived in Chapter VI are equivalent to

within the order of the method. Thus either one may be used; but from the work in

Chapter VI, equation (7.63) might give a better result at a higher cost. However, at

this time ýW(0) form will continue to be used.

7-20



One possible application of these ideas to the Euler equations is

P, =P:,±+At(-P--) n= Pi + At (t d(p ))f

Z- -x [p9 w(O Z dx'V

-pn + At {,Pn [j2O ± +

- Pn + At Z m(,,n _- naý (7.64)

J=1

,n = ,n + At(-..py = ,n At( +PaP

([pn~ N I' p71 \ ,

+; n-W(O)±Z + E M, V'[PI (pN) 'J
r p71  N /pn pn

= '-A~ W(O) +mj '+ ) (7.65)
3=n (pT')2  (p7l), 3

=nl e+At AtF P i( n + t_ O(pv)\

ax 3 2d 2 \x

n At [n NNp

;z=1 v7 _L VnfUV,, -- W(O + V
71 1Pn MV 1') nnW

(p!1 i (p) "J JN 1pm=

neLin-W(0rnVn
-4v (p)2 I'3 (7.66)

= xe' -tv'. (7.67)
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7.5 Summary

In this chapter, several time schemes were proposed for use with SPH. The

second order schemes are more likely to be used for most problems, because of their

higher order accuracy. However, the Lax-Wendroff form is more suitable for small

scale problems due to the cost of calculating the second derivative terms. The Central

and Shu schemes should work well for a vast majority of problems of all sizes. Since

quantitative comparisons between them were not made, the choice of which to use is

up to the individual user. The lower order schemes are of limited use by themselves,

but will be of importance in the next chapter.
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VIII. HYBRID METHODS

This chapter introduces the concept of flux-limited hybrid schemes from finite

differences to SPH as a way to handle shocks. Problems of hypervelocity impact,

among others, are often characterized by large areas of relatively smooth data with

intermittent areas of discontinuous data. When modeling problems such as these,

the largest concern often is how to handle the discontinuities or shocks properly.

This is also a concern in the consistency of a method, and as such was discussed in

Chapter III. Flux-limited hybrid schemes are much newer than the more traditional

artificial viscosity notion in finite differences, but in some case seems to perform

better. The schemes weight average lower and higher order methods based on the

closeness to a sensed shock. Therefore, the difference order time schemes discussed

in the previous chapter will be quite important here. In this chapter, the hybrid

notion is more fully described and the six SPH hybrid schemes are proposed and

tested against a baseline case. Under basic assumptions (no-frills implementation)

the hybrid schemes perform roughly the same as the baseline. This concept is not

ready for production SPH codes, but the basic foundation for the work is laid here.

8.1 Introduction

A category of techniques that handle discontinuities quite well is known as

high resolution methods. One of the main ideas found in these techniques is to use a

high order method away from the shock, while near the shock use a method that has

more dissipation. The reason for the greater dissipation is to control the oscillations

and stability while accurately resolving the shock.

Decades ago these notions gave rise to artificial viscous techniques applied to

finite difference methods. Some of the earlier work was performed by Von Neumann

and Richtmyer (66) and Lax and Wendroff (29). These were designed to control

fluctuations near a shock by mimicking higher order spatial derivatives (viscous
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terms) in a controlled manner. Through the years since then, several variations

were derived for finite difference techniques and more recently for SPH. However, it

was felt by some authors that it was too difficult to control this "artificial viscosity-.

Just enough is needed to smooth the oscillations, but not too much so that the shock

is overly smeared.

So, in the early 1970s, a new approach for finite differences was proposed

known now as the flux-limiter technique. These ideas were first popularized in finite

differences by Harten and Zwas (15). Quite simply, they involve using two different

techniques and a weight function (or limiter) to select which method to use. In this

way, a high order method (or flux) can be used in areas of smooth data while a low

order flux can be used near a discontinuity. A weight function, or limiter, is used

to determine which flux or what proportion of each to use. Hence, a hybrid flux

is developed. Using FH for the high order flux and FL for the low order flux, the

hybrid flux can be represented as

F(U) = OFL(U) + (1 -0)FH(U). (8.1)

In this example, 0 is the flux limiter that would usually be contained in [0,1]. Equa-

tion (8.1) can also be rewritten as

F(U) = FH(U) + 0 [FL(U) - FH(U)] . (8.2)

The second term (involving 0) can be thought of as an artificial viscosity term added

to the higher order method. This points out these two ideas may not be quite as

distinct as they originally may appear. For an introduction to these ideas (for finite

differences) see LeVeque (32) or Woodward and Colella (68).

As noted earlier, the artificial viscosity technique has been used in SPH for

several years now with some success. However, there are some concerns that it is not

adequate in all cases. For example, when modeling the Riemann shock tube problem
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(a classic test case described later), artificial viscosity is not enough to allow the SPH

continuity equation to be used. Instead, the less favorable density-by-summation

form must be used. It is concerns with test cases such as this, together with the

success of flux-limiter techniques in finite differences that influenced the choice to

propose hybrid methods for SPH.

Two general ways of obtaining a hybrid method are proposed in this chapter:

using a consistency argument and using two different methods. These are addressed

in the next two sections.

8.2 Consistency Approach

This notion is introduced in Chapter III, Non-Smooth Functions section (3.5).

The basic idea is to develop an SPH method that is consistent in areas near dis-

continuities. Since the work for this was already done, it will not be repeated here.

The results of that work can be written as the sum of the standard SPH method

plus a correction term. Although this is not quite the same as a flux-limited hybrid

method, at least not as it appears in the finite difference literature, it has the same

basic tenets. That is, in areas of smooth data one equation is used and near a shock

another. The limiter function is built into the derivation performed in Chapter III

and Appendix A.

Currently this approach is strictly an academic exercise. There has been very

little success in obtaining computational results on known test problems. There

could be several reasons both computationally and algorithmically. Some of the

more likely reasons are: poor time scheme, poor choice of time stepping, poor choice

of kernel, poor shock sensing algorithm, or poor choice of test problems. It is,

of course, conceivable that the algorithm, time scheme, etc. are not implemented

correctly. However, this was reviewed and it is less likely than the other reasons.

Hence, this approach will not be addressed any further here.
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8.3 Two Method Approach

This approach follows the ideas of flux-limited hybrid methods from the finite

difference literature and uses equations (8.1) or (8.2) above. In this approach, the

high order flux is not of prime concern to us; since from earlier in this dissertation,

SPH was shown, in general, to be a second order method. So any of the second order

time schemes discussed in the last chapter should work well. The bigger concerns

are what low order scheme to use, do the two schemes match, and what to use for

the flux-limiter.

Low order schemes. Because SPH is usually considered second order, little

attention has been given to lower order SPH approximations. The most obvious

lower order SPH method is to use non-symmetric kernels. Although it is possible to

have a second order method with non-symmetric kernels, it is much more difficult. A

good example of a non-symmetric kernel is a one-sided kernel. This corresponds to

the notion of forward/backward differences, or more generally upwind schemes. So a

forward time with one-sided kernel SPH would be analogous to the most basic finite

difference upwind method. Another possibility is the field averaged time (either

central or forward) with SPH symmetric kernel. These also would be first order

time, first order space. They may smooth more, but are more easily applied in

higher dimensions. Both of these ideas were introduced in the previous chapter.

A good match. The best matches are when the two methods have several terms

in common so that they appear to converge to each other as a particle moves closer

or further from the discontinuity. In this way the combination is much smoother and

should not be effected as much if particles are more sparsely spaced. When selecting

the two methods to combine, more thought needs to be used than to simply attempt

every possible combination. Methods should be selected that by themselves are

reasonable (either high or low order) and that fit well together. These are sometimes

at odds with one another. For example, the central time/SPH space is a good high

order method that would match well with central time/upwind SPH. However, from
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finite differences it can be shown that central time/forward (or backward) space is

unstable (under usual time restrictions). Other examples of bad hybrid schemes are

available. but this chapter will concentrate on those that show promise.

Limiter Function In order to perform calculations, a limiter function needs

to be developed for SPH. Starting with work found in the published literature for

scalar conservation laws (e.g. Sweby (62)) and then expanding upon it for the Euler

equations proved useful. It is decided that discontinuities in any of the field variables

•, .e) should be captured. Also it is desireable that the method not be strictly for

)r ne dimensional problems. This yields a flexible function that may be used for higher

dimension problems, although the exact implementation of this algorithm is done

only in one dimension here. Also note that efficiency is not taken into consideration.

The algorithm basically calculates a ratio of the local field difference to the

maximum difference ((ui - uj)/Auma). This is then multiplied by a negative expo-

nential function based on how close the particle is to the sensed shock. This picks

up only relatively large discontinuities, but is sufficient for this problem.

Algorithm 1 SPH Flux-Limiter 1

Given: c, and f 2

Find: Pmrn, Pmax, Vrin, Vrax, emin, emax

Define:

P = Pmax - Pmin

Vm = ax - Vmin

e = emax - ermin

end define

Before the SPH sums are calculated do:

mxk = mxj =

6=0

while (Ixi - xjI < Kh) and j < i
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if(f > E) and (1&:;Ll >6)

then
65 = •p

rnxj = j

if (1O1 > E2 ) go to loop

end if

end while

repeat for v and e

repeat for p, v, and e for j > i to get mxk

loop: Oi = 6 * exp(0.5 - max(Kh, X,,,mk - xmxj)/(2rch)]

end 0 calculation

end

Instead of using Aumax (•, v, or ý in Algorithm 1), where the maximum is taken

over all particles, one might want to use Aut,,m=i, where the maximum is taken as

the largest local maximum; ie. the maximum difference within the support of the

kernel. This would detect more discontinuities than the original form. Since shock

detection algorithms are not exact, the implementation is more of an artform than

science.

Note for higher dimensions this algorithm can be easily changed to find the

ratio (6) within the support of the kernel, thus extending the hybrid notion to higher

dimensions. Also note in some applications it might be advantageous to use a 0ij

formulation instead of just 0i, althoug it was not done here. Some simple ways to

do this are to use an algorithm such as the one above and then use (Oi + 0j)/2, Oi8j,

or max(Oi, 09).

Based on the ideas discussed so far, some possible hybrid methods are now

presented. However, first a few notes on notation. The formulas given in the rest of
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this section are for the general conservation equation

Ut = -[f(u)]. (8.3)

In the equations to follow, ui+1 = F(u!) is used as one solution when F(U) is given

as in equation (8.1). Also, in the formulas to follow, W is used for one-sided kernels,

W for field averaged kernels, and W and W for just any symmetric kernel. Where

they appear in the same equation, the kernels may be the same, but the notation is

used to point out that they do not have to be. The methods were numbered 1-20

based on original plans. Methods 2, 4, 6, 8, 12, and 20 are discussed below. Methods

1, 3, 5, 7, and 11 did not converge and are briefly discussed later. The remaining

numbers in the sequence (9, 10, and 13-19) were reserved for other methods originally

planned for development; but never actually completed. So start with Method 2.

8.3.1 Method 2. High order: SPH Lax-Wendroff/Symmetric SPH. Low

Order: Forward Field Average/Symmetric SPH.

This method combines the forward time with field averaging in the area of a

shock (8.4) with the SPH version of Lax-Wendroff away from the shock (8.5). The

low order method uses a first order time scheme with the second order space scheme.

The high order method should be second order everywhere. This is the first time

that a Lax-Wendroff type SPH approximation has been attempted.

N N
FL = 1: Ax 0u' WVi - At •_ Ax, f(u0) WI. (8.4)

j=1 j=1

N At2N
FH = 0 - At Axj f(u') W:. + •,Ax f(u!)W (8.5)

This is similar to a classic finite difference technique. The one dimensional wave

equation analogy would be Lax-Wendroff in smooth regions with Lax-Friedrichs near

the shock.
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8.3.2 Methods 4, 6. and 8. High order: Central Time/Symmetric SPH.

Low Order: Central Field Average/Symmetric SPH.

This method combines the central time with field averaging in the area of a

shock (8.6) with the central time away from the shock (8.7). Method 4 uses the

approximate central time formulation, Method 6 the near central time, and Method

8 the full central time. Each of these ideas was discussed in the previous chapter.

More than one form is investigated to see if there is any noticeable advantage to

truer central time forms.

N N

FL = E Ax_ u'-'WVij - 2At : Azj f(u') W, (8.6)
j= 1  j=1

N

FH = u - 2At jAjf(u')W, (8.7)
j=1

The biggest advantage of this method is its simplicity. The two fluxes are very

close, with only the value at the previous time step different. The one dimensional

wave equation analogy would be central time-central space in smooth regions with a

modified Lax-Friedrichs near the shock. The reason it is a modified Lax-Friedrichs

is that the usual version uses forward time with averaging where central time with

averaging is used here. A more standard Lax-Friedrichs could be used when the full

central time is used.

8.3.3 Method 12. High order: Shu Time/Symmetric SPH. Low Order:

Forward Field Average/Symmetric SPH.

This method combines the forward time with field averaging in the area of a

shock (8.8) with the Shu time (see equation (7.37)) away from the shock (8.9).

N N

FL = ' Axj u' Wij - At E_ Ax f(uý) Wi' (8.8)
j=l j=l

+ t • xj f(u') w' - _,At AXj f(u- ) w, (8.9)
5 5 5 j=- 8 j=8
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The two fluxes are very close, and easy to combine. The Shu time is also useful in

stabilizing a method (Shu proposed this to go with Total Variation Stable schemes).

8.3.4 Method 20. High order: Approximate Central Time/Symmetric

SPH. Low Order: Central Field Average/Symmetric SPH.

This is the same basic form as Method 4 (equations (8.6) and (8.7)). The

difference is an option is given to vary the amount of smoothing obtained from the

lower order method in each conservation equation separately. This version is derived

because in the current SPH methods where there is no smoothing in the continuity

equation, artificial viscosity in the momentum equation, artificial viscosity and wall

heating in the energy equation, and no smoothing in the particle motion equation.

This allow me to hypothesis that the other hybrid methods may have too much

smoothing in some equations; this corrects that possible problem.

8.3.5 Methods that Failed to Converge. There are several hybrid methods

that were attempted because they seemed like good choices at the time, but they

would not work when applied to the Riemann shock tube problem. This, of course,

is not conclusive evidence that they will not work on other problems. However, it is

felt that it is better to use the methods that work for a proven test case.

"* Method 1 - High order: SPH Lax-Wendroff. Low Order: Forward Time /
One-Sided SPH.

"* Method 3 - High order: Approximate Central Time/Symmetric SPH. Low

Order: Approximate Central Time/One-Sided SPH.

"* Method 5 - High order: Near Central Time/Symmetric SPH. Low Order: Near

Central Time/One-Sided SPH.

"* Method 7 - High order: Full Central Time/Symmetric SPH. Low Order: Full

Central Time/One-Sided SPH.
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e Method 11 - High order: Shu Time/Symmetric SPH. Low Order: Forward

Time/ One-Sided SPH.

* Method ('onI - High order: Approximate Central Time/Symmetric SPH. Low

Order: Approximate Central Time/Shock Consistently Corrected Symmetric

SPH.

The one-sided methods did not work very well for this test case. This is possibly due

to similar problems with using artificial viscosity in SPH. Namely, some distortions

are smoothed out while others, like a spike (both positive and negative), grow un-

controlled until a non-physical result (such as negative density or particles crossing)

occurs.

8.4 Sample Calculations

For all the methods in the previous section, the one dimensional Riemann shock

tube test problem is performed. This test does not conclusively eliminate the poorer

methods, but casts doubt on their use as general techniques. The Riemann shock

tube problem is well known, and not described here (see LeVeque (32) or Smoller

(57)). For the test case in one dimension, use a line of equally spaced particles on

[0, 1] with a discontinuity at 0.5 and the values for all the particles on either side of

the discontinuity are: (ut - left, uT - right)

PI = 1.0 p, = 0.125

vI = 0.0 V, = 0.0

el = 2.5 e, = 2.0

P = 1.0 P, =0.1

Also the gas constant, IF = 1.4 is used. The solution is described in several places

including (32) and is shown on the plots to follow and those in Appendix D.
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[n addition to performing this test and obtaining qualitatil-t results (plots),

error norms are calculated. For every method, three relative norms are calculated

for each of density, velocity, energy, and pressure using two different sets of points.

This seems like overkill (and may be), but the information is useful and can be easily

summarized. The three different norms are 11, 12, and 1,, calculated as

l, E- lIf(xi)-S(x,)I (8.10)= Eill If(M,)

12 = Z=(f(x,) - S(x.))2 (8.11)FN~i=(f(X,))2 (.1

max, If(xi) - S(xi)(mtx lf x1= .(8.12)

maxi If (xi) I

The two different sets of points are: 1) 1000 uniformly spaced points and 2) using

the SPH particles as the points. Note that the two sets of points provide roughly the

same results, demonstrating the approximating nature of this method (as opposed to

an interpolatory nature). Further note that the l.. norm proves not to be very useful

as it can be roughly determined by examing at the difference between the calculated

and true solutions on the plots to follow and those in Appendix D. Therefore, in

the next section only the 11 and 12 norms for the 1000 uniformly spaced points are

summarized. The entire sets of data may be found in Appendix D.

The initial problem setup uses a fixed h, the B-Spline kernel (kernel # 2 from

Chapter VI), CFL number of 0.2, and no wall heating. Although there are better

settings for the baseline case, reducing the number of variables and comparing the

various methods in as basic a form as possible is more appropriate at this point in

the analysis. Therefore, items such as wall heating and variable h are deliberately

left out to avoid clouding the comparisons. Two difference computations are made

for each method. First, 600 particles are used with Ax = 2h/3. This is similar to

many calculations used by other analysts and in the published literature. The second
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set of calculations uses 816 particles. In this case Ax = 0.5h everywhere except near

the shock where Ax = 0.4h.

8.4.1 Baseline. In addition to the methods described in the previous sec-

tion. the following is used as the Baseline: Approximate Central Time with density-

by-summation. This form for calculating density in SPH has been used often and

results for the Riemann shock tube problem have been published several times (in-

cluding Monaghan and Gingold (37)). However, using the density-by-summation

has some accuracy concerns in certain types of calculations, especially those involv-

ing metallic equations of state such as HVI problems (69). However, up until now,

obtaining density using the continuity equation was not possible for this simple test

case. Also artificial viscosity (with coefficients 2.5 and 2.5) is used for the Baseline.

For the Shock Tube Test, the results at 1 microsecond for the Baseline are

shown in Figures 8.1 - 8.4. The data shown in Figures 8.1 and 8.2 uses 600 particles

uniformly spaced. The data shown in Figures 8.3 and 8.4 uses 816 particles with

higher concentrations of particles near the shock.

The 600 particle case, shown in Figures 8.1 and 8.2, is a fairly good match

to the analytic solution, except for the density and energy near the contact surface.

These shortfalls cause the shortfall in velocity and the extra step in the pressure

contour. The shortfalls are caused by not having enough particles in that area to

accurately represent the derivative. This behavior can be expected whenever the

interparticle spacing becomes larger than h (Chapter VI). This happens much more

often when using a fixed h form of SPH, as was done here. The overshoot in energy

(the spike) can often be controlled by using a wall heating term. This was not done

for all the examples in this dissertation.

The 816 particle case, shown in Figures 8.3 and 8.4, is an excellent match to

the analytic solution (except for the small energy spike). This increase in accuracy

is a good indication of the method converging to the proper solution as Ax --. 0.

8-12



Density vs. X

Calculation .... ..... Analytic

1.0-

0 .7 5 -
6 0 0

Time = 0.10

S.5Iter 665o0.5-

0.25 --

I - I I i i I I i i I I Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Velocity vs. X

Calculation Analytic

0.75 -
0.7 I;NP =600

0 ii Time = 0.10
"5 0.5-•

0 - Iter = 665

I0.25-1

0.0 T I i I ..... ... T".....T Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure 8.1 Baseline Shock Tube Results

8-13



Internal Energy vs. X

Calculation .................. Analytic

NP = 600

(D 2.5- :f ime =0.10
w

Iter =665

II\ I
2 .0 - ....................

I I I I I TI I I I I I I Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Pressure vs. X

Calculation Analytic

1.0 .

0.75 NP = 600

2 -Time =0.10
:3

T 0.5- Iter =665
a.

0.25- .

T ..... ..... I ..... Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure 8.2 Baseline Shock Tube Results

8-14



Density vs. X

Calculation ..................- Analytic
1.0--

NP =816
0.75-

Time =0.10

M Iter = 678
o0.5-

0.25.

I 1 I Baseline

0.0 0.25 0.5 0.75 1.0

X-Coordinates

Velocity vs. X

Calculation Analytic

0.75- NP =816

>, Time = 0.10
"*o 0.5-

SIter =678

0.25

0.0 i rT- r-. Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure 8.3 Baseline Shock Tube Results - Extra Particles

8-15



Internal Energy vs. X

Calculation -------- ------- Analytic

3.0-

NP = 816

Time = 0.10S2.5-w
E Iter =678
4-0i

2 .0 - --------------------------------------

I I I- i - - - Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Pressure vs. X

Calculation - Analytic
1.0 _

NP =816
0.75-

2,Time =0.10

0.5- Iter = 678
a.

0.25-

i i I I I "" T'" " T"Baseline

0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure 8.4 Baseline Shock Tube Results - Extra Particles

8-16



For the remaining methods, a brief discussion is given on the individual results

(which may be found in Appendix D) and then a comparison of all the methods is

given in the next section.

8.4.2 Method 2. For the Shock Tube Test, the results at 1 microsecond for

Method 2 are shown in Appendix D in Figures D.5 - D.10.

The 600 particle case, shown in Figures D.5 and D.6, matches the true solution

relatively well and is similar to the Baseline case. There is a small energy spike, some

noise in velocity near the rarefaction wave, and the shortfall in all the variables is

still present. However, the biggest problem is that the location of the front of the

shock wave is missed. The 816 particle case, shown in Figures D.7 and D.8 is a

nice improvement for this method. This seems to indicate that this new method is

converging. The results for this case match the true solution quite nicely except for

being slightly short in energy. The front of the shock is still a little off, but it is

improving.

The results of a variable h case (shown in Figures D.9 and D.10) are included

to demonstrate the effectiveness of variable h and demonstrate that it can be used

to control most of the fluctuations and the shortfall in the SPH Lax-Wendroff and

other forms. The results are not quite as good as the 816 particle case, but better

than the 600 particle case.

8.4.3 Methods 4, 6, and 8. For the Shock Tube Test, the results at 1

microsecond for these methods are shown in Appendix D in Figures D.11 - D.22.

The 600 particle case for Method 4, shown in Figures D.11 and D.12, is quite

similar to the Baseline case. There is some additional noise (Gibbs phenomena and

a larger energy spike), but the biggest difference is the front edge of the shock is

lagging. This could imply a lack of conservation and is further addressed in Method

20. The results shown in Figures D.13 and D.14 are for a special form of the 600
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particle case. As this is analogous to a Lax-Friedrichs form alone, more smoothing

is expected (and seen). This extra smoothing causes the shortfalls to be even more

exaggerated than in the hybrid case. The 816 particle case for Method 4, shown in

Figures D.15 and D.16, is quite an improvement over the previous two results. It has

the advantage over the Baseline of not having an energy spike (and corresponding

pressure spike), but it misses the velocity by more than the Baseline and still misses

the front edge of the shock.

The 600 particle case for Method 6, shown in Figures D.17 and D.18, is ex-

tremely similar to the Method 4 case. This tends to imply the extra cost of perform-

ing the near central time (Method 6) over the approximate central time (Method 4)

is probably not cost effective.

The 600 particle case for Method 8, shown in Figures D.19 and D.20, is also

similar to the Baseline and Method 4 cases. There is a little more noise in velocity

and a slightly smaller energy spike over Method 4. This method also misses the

front edge of the shock, but by a smaller amount than Method 4. The 816 particle

case for Method 8, shown in Figures D.21 and D.22, is also similar to the Baseline

and Method 4 cases. The same differences noted for the 600 particle case are still

present, only smaller. Overall Method 8 (true central time) is better than Methods

4 or 6 (pseudo central time schemes). So, for small problems the added memory

requirements could be easily handled for the better results. For larger problems the

trade-off of memory versus accuracy needs to be considered on a case by case basis.

8.4.4 Method 12. For the Shock Tube Test, the results at 1 microsecond

for Method 12 are shown in Appendix D in Figures D.23 - D.26.

The 600 particle case, shown in Figures D.23 and D.24, is one of the better

of the hybrid schemes. The front edge of the shock is matched correctly and only

minor noise is noticed within the results. The shortfall due to not enough particles

is still present, but that is a problem with all the 600 particle examples (with fixed
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h). The 816 particle case for Method 12, shown in Figures D.25 and D.26, is only

a slight improvement over the 600 particle case. Although much of the shortfall is

eliminated, the improvements seen in this method are not as good as those seen in

other methods.

8.4.5 Method 20. For the Shock Tube Test, the results at 1 microsecond

for Method 20 is shown in Appendix D in Figures D.27 - D.30.

The 600 particle case, shown in Figures D.27 and D.28, is actually a special

case of Method 4 where the smoothing varies from equation to equation. This has

allowed the front edge of the shock to be matched quite nicely. However, the price

paid is in additional noise. The 816 particle case for Method 20, shown in Figures

D.29 and D.30, shows that this special case of Method 4 converges quite nicely.

Although some noise (especially Gibbs type phenomena) is still present, the results

are quite acceptable.

8.5 Method Comparisons

The error norms for the tests in the previous section are found in Tables D.A

- D.7 in Appendix D. As discussed earlier, only the data for the 11 and 12 norms for

the 1000 point analysis is summarized here. The formulas for the norms were given

in equations (8.10) and (8.11). The summarized results are given in Figures 8.5 and

8.6. On each chart the 11 norm appears in the bars on the left and 12 norm in the

bars on the right. The small boxes at the end of the line segment in each plot are

the results for the Baseline.

The 600 particle case is probably close to standard since the particle spacing

is the very popular 2/3 h. Comparative results for all the methods can be seen in

Figure 8.5. Note that the hybrid schemes perform approximately the same as the

Baseline for density, pressure, and energy. Methods 2, 4, 6, and 8 do not perform as
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Figure 8.5 Shock Tube Results - 600 particles

well on modeling the front edge of the shock causing the velocity for those methods
to be somewhat poorer than the Baseline.

For the 816 particle case comparative results are shown in Figure 8.6. All

the methods improve over the 600 particle case, showing their overall tendency to

converge as Ax -• 0. However, the improvement is somewhat better in the Baseline

than for the hybrid methods. This probably indicates the limiter function or the

actual way in which the methods are combined may need to be studied further.

8.6 Summary

In this chapter the concept of flux-limited hybrid methods was introduced,

developed for SPH, and tested on a set of SPH schemes. The development is quite
promising since the concept is well rooted in the finite difference community and the

implementation is relatively straightforward in SPH (even in higher dimensions). The
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equation for the first time when performing the Riemaun shock tube problem. This

is a significant feat, and by itself asserts that the development of this concept should

continue. Additional work in obviously needed to take this concept and apply it in

production type codes. However, that will not be done in this dissertation.
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IX. SUMMARY/CONTRIBUTIONS

Throughout this dissertation results were summarized and commented on as

appropriate. The purpose of this chapter is to summarize the work as a whole and

to point out the important contributions to the research community. Also, areas of

future research are addressed.

The work is broken into two major categories: the numerical properties of SPH

and the implementation of SPH. For the most part, material from Chapters 111-V

(and Appendices A and B) address the numerical properties of SPH while material

from Chapters VII and VIII (and Appendix D) address the implementation of SPH.

Chapter VI (and Appendix C) can be placed in either category since the subject of

kernels is relevant to both. There is, of course, some overlap of these two categories

in all chapters, but the categorization mostly holds and makes the summary easier.

Also, since numerical analysis often lies between pure (theoretical) mathematics and

the application (engineering or physics) each group may be identified with a cate-

gory. The numerical properties chapters will be of more interest to the mathematics

community while the remaining chapters will be of more interest to the engineering

community.

Each of the chapters in the dissertation will now be reviewed, grouped accord-

ing to the discussion above.

9.1 Numerical Properties

Summary. Chapter III (and Appendix A) concentrated on consistency. This

chapter has important connections with Chapters V, VI, and VIII. It started with

a detailed derivation of the kernel approximation and the particle approximation.

This allowed for the proof of two consistency lemmas. Then a discussion of how

the process may be applied to differential equations, including Euler's equations was

performed. Although consistency analysis is traditionally performed under smooth
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data assumptions, an alternative SPH form was investigated and derived after re-

laxing those assumptions. Finally it was shown how the previous material may be

applied in higher dimensions. As an aside, the SPH forms of artificial viscosity and

wall heating were shown to also be consistent.

Chapter IV (and Appendix B) concentrated on stability. This chapter has

important connections with Chapters V, VI, and VII. A detailed linearized stability

analysis was performed corroborating the existence and nature of an instability seen

by other analysts. Four different solutions were proposed to eliminate the problem.

Finally an initial total variation stability analysis was performed, leading to two

monotone SPH schemes.

Chapter V concentrated on convergence. This chapter has important connec-

tions with Chapters III and IV. This chapter reviewed a convergence result from

finite differences and then extended the result to SPH. The primary work was in the

statement and proof of three lemmas derived from the Lax-Wendroff theorem.

Contributions. Some of the material found in Chapter III (Consistency) and

Chapter IV (Stability) has been addressed in the SPH literature, but never with

the rigor given here. There are several individual items of new work in these two

chapters that are important, such as the instability and proposed solutions having

direct relevance to difficulties SPH has in tension. But, the real gain in these two

chapters is a thorough understanding of the process of obtaining consistency and

stability in SPH. However, the most significant contribution to the SPH community

from the numerical properties category comes from Chapter V (Convergence). It is

my understanding that this is the first mathematical proof of convergence of SPH

to be obtained. Previously, results from SPH calculations would be compared to

analytic or experimental solutions to determine if the method was adequate. This

empirical proof of convergence is important and should not be dismissed, but the

mathematical proof of convergence will allow provide for a rigorous foundation and

provide support that the method is a reliable technique.
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9.2 The Kernel

Summary. Chapter VI (and Appendix C) concentrated on the SPH kernel.

This chapter has important connections with Chapters III, IV, VII, and VIII. This

chapter started with a review of the requirements placed on a function to be an SPH

kernel. The chapter then quickly reviewed how to create higher order kernels and

discussed the smoothing length. This included an investigation into the derivation

of a variable h. The primary work in this chapter was the derivation of measures of

merit used to compare kernels. Eighteen kernels (many of which were proposed here

for the first time) were studied using these measures to determine their usefulness

and that of the measure itself. Analytic results were compared with calculations

from a test problem to verify the work.

Contributions. The kernel, with only a few exceptions, is not addressed at

great tengths in the SPH literature. That is, it is simply treated as a given part of

the implementation of SPH. However, since the kernel is such an important aspect

of SPH, it deserves more analysis. Chapter VI (Kernels) provided both qualitative

and quantitative mea-'.:es of merit and procedures for determining them. These

measures will allow general comparisons of kernels and further development of SPH

based on good kernels, ensuring more accurate results. There are additional items

of interest in this chapter (such as proposing new kernels and evaluating 18 kernels),

but the measures of merit are the key contribution from these sections.

9.3 The Implementation

Summary. Chapter VII concentrated on time schemes to use with SPH. This

chapter has important connections with Chapters IV, VI and VIII. In this chapter

three second order time schemes are proposed: Lax-Wendroff, Central, and Shu to

use with SPH. Only Central Time has been used in SPH before. Two lower order

schemes were developed primarily to use with the hybrid methods in Chapter VIII.

9-3



Chapter VIII (and Appendix D) concentrated on hybrid methods for SPH.

This chapter has important connections with Chapters III, VI and VII. This chapter

started with a review of a method derived in Chapter III. Although it was not a

flux-limited hybrid method, it has many of the same properties and fits in well here.

The chapter then discussed and develop the notion of flux-limited hybrid SPH. Six

combinations were proposed and compared against a baseline with favorable results.

Contributions. Although the discussion of time schemes found in Chapter

VII is important to the user community, the major contribution here comes from

the hybrid formulations found in Chapter VIII. Problems at interfaces of dissimilar

materials and at shocks within a material have been a primary concern in SPH (and

other numerical techniques) for many years. The hybrid form of SPH may not solve

all these concerns, but it should be able to solve many. The ease at which hybrid

methods can be incorporated into computer programs, even in three dimensions,

should make this a popular notion in the near future.

9.4 Future Direction

It is, of course, impossible to predict the future direction in the development

of SPH. But, based on the work in this dissertation there are some quite reasonable

paths. Also, some of the work here was limited based on several factors that could

now be further investigated. Hence, a list is provided that centers on future work in

six areas that follow directly from the work in this dissertation.

"* Reduce the impact of the AZx = m/p assumption. This assumption was key in

developing the consistency of SPH. It also was used several of places. There

are two paths for this. First, show in a mathematical way that the two vol-

ume elements are close and bounded. Second, find more efficient methods to

implement the equivalence.

"* Continue the development of total variation stable SPH schemes. Especially,

consider developing a TVD SPH scheme (if possible).
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"* Extend the kernel measures of merit to higher dimensions and other shapes

of kernels. For example, one shape that might have promise is a kernel with

two relative maxima known as double hump kernels. These measures of merit

should be useful in one dimension. but would be invaluable in higher dimen-

sions.

"* Continue the development of flux-limited hybrid SPH. Especially, in the areas

of the limiter function, higher dimensions, variable h, and efficiency.

"* Further investigations into the effects of a variable smoothing length (variable

h). This includes the effects on consistency, stability, and convergence.

"* Further investigations into difficulties in SPH involving problems in tension.

Some effects on consistency, stability, and accuracy were addressed individually

in this dissertation. However, a unifying analysis of this problem together with

possible fracture models would be useful.

In conclusion, I feel this dissertation has added significantly to the mathemat-

ical foundation of the SPH technique while at the same time providing insights into

the computational aspects of the method through the SPH kernel and proposing a

new method for SPH to handle one if the primary difficulties in applications (shocks).

9-5



Appendix A. ADDITIONAL CONSISTENCY NOTES

This appendix includes work related to the Consistency Chapter (Chapter III).

but the details were left out earlier.

.4.1 Von-Smooth Functions

The lemmas given earlier in Chapter III only applied when the functions were

sufficiently smooth. Also introduced in that chapter was the notion of deriving an

algorithm that is consistent even when the functions are not smooth. However, the

details were omitted from that derivation to this point. So the derivation of how to

obtain an SPH approximation for u'(xi) is now shown.

First, examine the kernel approximation for any function f(x). Consider the

interval shown in Figure A.1. Let a < x, - Kh and b > xo + Kh. Assume there exists

an integrable discontinuity in the function, f(x), at d. For now assume x. < d <_ b.

f(x) W(xo - x) dx f f(x) W(xo - x) dx W f(x) W(xo - x) dx

Expand f(x) in the first integral on the right-hand-side above about X, and about

x1 in the last integral, where d < x _< b:

Lb f(x) W(xo-x) dx

W LW(x. - x) [f (x.) + (x - x.) f'(x.) + I (x - x.)2f"(ý.)] dx

+ Jdb W(x,0 - x) [f (xi) + (x - xi)f'(xi) + 2 (x - xi)2fII(ý,)I dx

I Il
a Xo d b

Figure A.1 Non-Smooth Data Consistency part 1
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fd fb
= f(Xo) W(xo - x) dx + f(xi) W(xo - x) dx

+f'(Xo) (x - x,)W(xo- x)dx + f'(x1) (x- x)W(xo - x)dx
1 d

+ j(x-x.) f"(ý,,)W(x,-x)dx

+f(x - x) 2 f"(ýi) W(x,,- x) dx

= f(xo) W(xo -x)dx+ [f(xj) -f(xo)]Z W(x0 -x)dx

+f'(xo) (X _ Xo) W(xo -x ) dx

+ b[(-- X)f'(X) - (x -_ x)f'(Xo)] W(xo - X) dxdd

+- 2 x - xo) 2f"(ýo) W(xo - x) dx

+2 (X X1 )2 f",(ý,) W(Xo - x) dx.

Now assume the kernel W, is even, is normalized, and has compact support. The

previous equation then simplifies to

ffx) W(x0 - x)dx = f(x,) + [f(xj) - f (xo)]d W(x., - x)dx

+ d (x - xl)f'(xi) - (x - xo)f'(xo)] W(xo - x) dx
1d

+- (X - xo)2f"(ýo) W(xo - x) dx
1 b

+' jd(X - x1 )2f"(ý,) W(xo - x) dx . (A.1)

Note: by the compact support of W, Ix - xiI tch and Ix - x1l < Kh in the

domains for the integrals above. Therefore the last three lines in equation (A.1) can

be bounded by terms of order h, h2, and h2 respectively as long as f' and f" can

be bounded in the following sense: f, f', and f" must all exist and be bounded on

[a, d) U (d, b], lim._d± If'I _ M, and lim•.d+ If"I < M. Previously in Chapter III,
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for smooth data

bf(x) W(xo--x)dx f f(xo) + O(h2),

but now the equation is

Lf(x)w(x, - x)dx = f(x,) + [f(xi) - f( x)] W(xa -x )dx + O(h). (A.2)

Note that the second integral is only over part of the interval and therefore is not

equal to one. This implies for non-smooth data when x, --+ d

f f(x) W(xo - x) dx -,f f(x,) as h -+ 0

Consequently, in the context of this presentation, using the normal SPH approxima-

tion to model a shock is inconsistent. However, if the second term in the right-hand-

side of equation (A.2) (-, A f) is retained, then the method would be consistent and

of order O(h). That is what is done here.

Now consider f(x) = u'(x), where u', u", u"' exist and are bounded on [a, d) U

(d, b]. Then

a u'(x)W(xo - x)dx = u'(xo) + [u'(x,) - u'(xo)] d W(xo - x)dx + O(h). (A.3)

Use the details above along with integration-by-parts to obtain a new form for u'(xo).

So integrating by parts yields

bu'(x) W(xo -x ) dz = u'(x) W(xo - x) dx + Iud'() W(xo - x) dx

= u(x) W(xo - X)Id + u(X) W(Xo -X)j

a dx.
-3() °W(Xo- X)d.
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Use the compact support of the kernel and change the derivative on the kernel from

x to xo to obtain

bu'(x)1'(x, -- x)a d= [u(d-) - u(d+)]W(xo - d) + u(x)W'(xo - x)dx.

(A.4)

Put equations (A.3) and (A.4) together to obtain

6
u'(Xo) + [U'(Xl) - u'(X,)] j W(x, - x)dx + O(h) = [u(d-) - u(d+)]W(x, - d)

+ u(x)W'(xo- x)dx.

Since x, was chosen arbitrarily in [d, b] now let x, = d and then note

b W(xo - x) dx - W(xo - x) dx - W(xo - x) dx
d 0

[2 d2 W(xo-x) dx];.

Define 0 = 2 fd W(xo - x) dx to now obtain

u'(x.) + [u'(d) - u'(x.)] 1- 0]+ O(h) =[u(d-) - u(d+)] W(x. - d)

+ •bu(x) W'(xo - x) dx;.

Combine terms and rearrange to obtain

u'(Xo) = 2 11b w'(x0 - X) dx + [u(d-) - u(d+)] W(xo - d)
1+ a

-+(1 - 0) 0(h); (A.5)

To derive a more usable form, obtain expressions for u'(d) and u(d-). To find the

expression for u'(d), follow the same procedures that were used up to this point

(abbreviating the steps):
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f(x) W(d - x) dx = d f(x) W(d - x) dx

= f(d)+[f(xo)- f(d)]j W(d-x)dx + O(h).

However,
S=j W(d - x) dx.

Therefore, f b =f(d) + f(Xo)(A6
f (x) W(d - x) dx - f 2d f(. (A.6)

2

Now let f(x) = u'(x) and note

Lb U'(x) W(d-bx)dx = + (bU'(x W~ - x ddu'(x) Wd--x dx + du'(x) W(d - x) do,

= u(x) W(d- X)I1- + u(x) W(d- X)1b÷ + u(x) W+(d- x)a~ dd1

= u(d-)W(d-d-) - u(d+)W(d-d+) + fbu(x)W'(d-x)dx

= [u(d-) - u(d+)] W(O) + j.u(x) W'(d- x) dx.

Therefore,

u'(d) + u'(xo) fb
u(+'2 = [u(d-) - u(d+)] W(O) + L u(x) W'(d - x) dx. (A.7)

Solve equation (A.7) for u'(d) and substitute into equation (A.5):

u'(x•) 2 )fI u(x) W'(xo - x) dx + [u(d-) - u(d+)] W(x. - d)
1+0

-- (10-o)- u'(x.) + 2 [u(d-) - u(d÷)] W(O)

2A-5
+2 Lu(x) W'(d -.x) dx] + 0(h).
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Combine u'(xo) terms to obtain

U'(X) ,1{jb()WX -X) dx + [u(d-) - u(d+)] W(xo - d)

- (I 0)[u(d-) -u(d+)]W(O)-(1-0)ju(x)W'(d-x)dx}+0(h)

U'(XO) =ju(X) I W'(xo, - a,) - 1 - W'(d - x)dx

+[u(d-) -u(d+)][W(xo - d) - (1 - O)W(O)] + O(h) (A.8)

Now obtain an expression for u(d-) using a Taylor series expansion

u(d-) = u(xo) + (d--x o )u'(xo) + ... -: u(xo) + (d-xo)u'(xo).

Substitute this into equation (A.8) and solve for u'(xo) to obtain

u'(x~ = 1[ - (d - x0,)[W(x 0, d) - (I - e)W(O)I] {ja [1 '(0  -

-(,-) W'(d - x) dx + •[u(xo) - u(d+)I[W(xo - d)

- (1-0)W(O)] + O(h)} (A.9)

It is advantageous in the implementation to replace W'(d - x) in equation (A.9) as

follows

W'(d- x) = W'(xo - x) + (d- xo) W"(xo -x) +

Substituting this into equation (A.9) yields

u'(xo) = [ - (d - xo)[W(xo - d) - (1 - 9)W(O)JI [

-(1 - 0)(d - x,)W"(Xo - x)I dx + [u(xo) -u(d+)][W(x, - d)

- (1 -0)W(O)]} + O(h). (A.10)
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This is now a kernel approximation form that involves only u(xo), 7.(d+), and the

associated kernel and integral values for these. To obtain a particle approximation

let

Bo = (d- xo)[W(xo- d) - (1 - O)W(O)],

placing this in the final SPH form (replacing integrals with sums) and writing it for

some particle i

Uj [ wis - (d- x, j)W
(Oi Bj j=l PiJO

+ [u(xi -u(d+)] + 0(h). (A.11)

Rewrite equation (A.11) as the sum of the consistent form for smooth data plus a

correction term by

,'(x,) = -j w + (-u, [B, W,'. -(1 - O9)(d - xi)Wij
3=1 P3  tOi - B3 pj

+Bi u(x:) u(d)} (A.12)

Taking the usual format for the kernel: W(x, h) = IK(f), the following expression

for 0 may be found
S0

0 = 2] K(v)dv;. (A.13)

Note that 0 < 0 < 1 and 0 should be investigated at the ends using (A.11) or (A.12)

to ensure they are well defined.

(i) As 1xi - di increases, ie. xi moves away from the shock, 0 increases until

Ixi - dI = xh where 0 equals 1. At that point 0 stays at 1 no matter how far xi gets

from d. Using the form from equation (A.11), as 0 -+ 1

N mJ i I__ W. i B- )u,•ud)
'(X,) E - 1 B + ( .B) [u -u.d+j

=1 Pj --B -- x

A-7



But B also goes to 0 in this case by the compact support of W. Therefore when

Ix, - dl = Kh, the correction term drops completely out and becomes the smooth

data result N

u'(Xi) = E _ u 1 W
j=1 PJ

(ii) As xi --+ d, ie. xi moves towards the shock, 0 decreases to 0. 0 never

actually reaches 0 since xi cannot equal d under the assumptions, but it can get very

close. Therefore, consider some of the terms as 0 -- 0. Using the form in equation

(A.11) let d = xi + eh, h > e > 0 and substituting to obtain

u'(x,) = ( ) -uj W'(x - xj)- 1 0)(x + eh -x,) W"(X- x3 )
-B F -I~j=l PiJ

+B ru(xi) -u(xi + h)11A.14
+0 1 xi+eh- i (A.14)

B = (xi + ci - xi)[W(xi - xi- h) - (1 - O)W(O)

= eh[W(-eh) - (1 - O)W(O).

Substitute B into equation (A.14) to obtain

u'(xi) = 1 - eh[W(-ch) - (1 - 0)W(0)] {= P [wu.,W - ( 0 h

+ 1[u(xi) - u(xi + ehl)j[W(-ch) - (1 - 0)Wo]};.

Expand the kernel in a Taylor series

W(-eh) = W(O) - eh VI,'(0) + 1 2h2 W"(O) +
2

Substitute to find
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,= [ - ch[W(O)- (S)w,(0)]] {- P[ - -)
8 )W(O~jj=1 P3

+ [u(xi) - u(xj + ch)][W(O) - 'hW())j + Q(62).

Use equation (A.13) and d = xi + ch to obtain

0 = 2f K(v)dv = 2jK(v)dv. (A.15)

Then 0 -- 0 as e -- 0,T 1- h as e -- 0. It is necessary to know if L bounded as

-- 0. Use L'H6pital's Rule to find . --_ h and by the Fundamental Theorem of27

Calculus from equation (A.15), 4- - 2K(c). Therefore

ch h 1

0 2K( -) 2W(E)

Then add the requirement that K(u) - 0 as u -* 0, ie. K(u) includes the constant

term. So in conclusion, FL -- as - 0. Hence

N wil , WA' + Aud[2W(O)-- W'(O
u'(x,) E, . w 2w(0)j + ( ) (A.16)j=1 P [Wii 2W ) 2W(C

as xi "- d where Aud =u(d+) - u(d-) .

So this form is well defined at the limits of 0.

Now consider the shock on the other side of x. as shown in Figure A.2. Next

find an expression for u'(xo) again. This follows exactly as in the first case as

contained in equations (A.1) - (A.16) and the surrounding work. Therefore, in the

work below many of the intermediate steps are dropped.
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I I I
a d Xo b

Figure A.2 Non-Smooth Data Consistency part 2

For this case equation (A.3) becomes

bU'(x) W(-x) dx = u'(xo) + [u'(xl)-u'(xo)] W(x 0-x)dx + 0(h).

Equation (A.4) remains the same yielding

u'(X,) + [u'(Xl) - U'(Xo)] W(xo - x)dx + 0(h) = [u(d-) - u(d+)]W(o - d)

+ ] u(x)W'(x0 - x)dx;.

Now let x, = d and then note

Ld MO [aj0 )

11 [2dl
+ - 2 W(x - x) dx _ + 0);,

2 2 0 2j

where 0 defined as before. Equation (A.5) becomes

u'(x0 ) 2 (~~ ) {1 Ju(x) W,(xo-X) dx + [u(d-) - u(d+)] W(xo -d)

- 1-(1 +0) u'(d)} + 0(h).

Once again an expression for u'(d) is needed. Obtaining it as before, equation (A.7)

becomes

2+ u'(x=) [u(d-) - u(d+)] W(O) + u(x)W'(d-x)dx.
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Solve for u'(d) and substitute to obtain

U'(x.) =(1 21)1,ux)W(, ) {j + [u(d-)- u(d+)] W(x 0,- d)

- 1 (1 +0)[ O'x.) + 2[u(d-) - u(d+)]W(O)

+ 2ju(x) W'(d -x) dx]}I + 0(h).

Combine u'(x,) terms and equation (A.8) becomes

U'(x.,) = j. u(X)[-W'(Xo,-X) + +16 W'(d -x)] dx

1ud)- u(d+)][W(x0 , - d) - (1 + 0)W(O)] + 0(h) .

For u(d+) use

u(d+) = u(x,0) + (d+ - x.) u'(x0,) + ... ;:t u(x0,) + (d - x,,) u'(x0 ) .

Also let

B,, = (d - x0,)fW(x,, - d) - (1 + 0)W(O)]

Substitute to obtain

u1'(xO) = (0O){jux [W(X0 - X) + (1+~0) W'(d - x)] dx

B [u(di-)u(xo,)] + O(h)}

u (x0 ) 0 ( b) {ju(X) [W'(xO -X)+ +(1 (d -x0 ,)WII(x0 -X)] dx

B [u(di-)-u(xo)]}I + 0 (h)
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Placing this in the final SPH form (replacing integrals with sums) and writing it for

some particle i

U ( ---B) { [ W + W (1 0) (d - x,), ,jj

A, [u(d -u(z)]} + (h) (A.17)

As before, rewrite equation (A.17) as the sum of the consistent form for smooth data

plus a correction term as

u'(xi) = mjuW! + - -uj [Bi Wij - (1 + Oi)(d - x,)W~j]

j=1 Pi + j - BA P

- Bi [u(d-) u(x)} . (A.18)

Recall, 0 = 2 fd, W(xi - x)dx which in the first case, 0 E [0, 1] but in the second case

0 E [-1,0]. Instead if 0 is redefined as

0 = 2 W (xi -x)dxl = 2I h gK(v)dv. (A.19)

then there are no changes necessary for equations (A.1) - (A.12) from earlier, but in

the second case 0 needs to replaced with -0 everywhere. So the last two equations,

(A.17) and (A.18) become

u'(xi) = [ (j-) wj - (d- xi)Wfj

+ "u(d-) - u(xi) (A.20)
N • 'i 1-'• N (A .20)'j -(1 -Oj i''

U'(XI) = Nm , ( 1
' =1 J Oi + B) {Z uA-BiWA -=(1 pi

+ Bi [u(d) - u(xi) } (A.21)
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To generalize the results, combine the results of equations (A.12) and (A.21)

as follows: Given x,, let d be the location of a discontinuity and Xd be the nearest

particle on the opposite side of the discontinuity from x,. Provided xd is quite close

to d the results are

0 = 2 h K(v)dv (A.22)

B = [wid - (0 - O)Wol(Xd,)sgn(xid) (A.23)N {5 r
UIX)= E - I hiu - (: j B) B{ij 0) Xdi W'j'

J=1 P3  ( +1B j P

B Ui " (A.24)
Xi- Xd

A.2 Artificial Viscosity/Wall Heating

In Chapter III (Consistency), three forms of artificial viscosity and one form

of wall heating found in the published literature for SPH are introduced. At that

time, these terms were stated as being consistent without showing the details. Those

details are shown here.

Start with artificial viscosity. The three forms are attributed to: Monaghan,

et al. (37), Hernquist and Katz (19), and Lattanzio, et al. (28).

1. Monaghan. It will be shown for the momentum equation (when 21 < 0),

this form of the artificial viscosity corresponds to

ah a ( v 3h [P aV\2]

h-oO cP- ,P o 0 (A.25)

For the SPH form, in the momentum and energy equations replace the P term with

- + il where the function I1:3 = II(x,. x,) is defined by

171 = -a0.5(ci + cj),aj + 3p2j (A.26)
o.5 (pi + p3 )
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{h(v, - vj).* (Xi - X')h=(v, - (x) + xh (v, - v,). (Xi - x') < 0

0 otherwise . I

The Hl term has a linear term that is referred to as 7r. and a quadratic term that is

called 7r6. First consider the linear term.

_ -a0.5(ci + cj)pj = (-_h) (4Ci + c (vi __xi - Xi
Ta0.5(pi + pj)• A + pj(X, - X _ h'

ci + cj _ c, + (ci - xijc, + "" = 2ci - x jcý +- .. - - ci xi) _ci + OhI
-~p -5 p+* ) v,)

pi + P pi + (Pixp+ ) 2p -xp ... P 2

!.2
Vi-Vj =V, - (vi - xijvi/ + -•-v" +"' = xijvi - 2 + 0(h

enc ) (v, - vA (v, + ( .- ) v:' j + o(h 2 )Pe t + PJ 
) Lid

So for the term that contains ira

j=1 i j~ i

N vi 2  N Nm

V, + Vi M-..0(h+) + O(h 3)
A----1 A 2

Examine the summation terms:

E~n~ M~ l2 W;j' = E .m W, + 0O(h) = •_ mipjWj'j + O(h2

13l j= =1 Pi

= p +O(h 2 )
"N (x 3 \
E"miJWI'V j = ,mixjiW;, + O(h 2 )
j=1 j=1

N N
= xi L miW~i - m mnxjW'[j + O(h2 )

j=1 j=1
NN

= Pi j=I Pj

= xip' - (xp)' + o(h) = -p, + o(h')
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Therefore,

ZmuraW = oh+ [(c,-) v' + 'c7) v'] -'-I + 0(h)

- h (ci uiP' + 2- -v. + ý-)-. + 0(h 3 )

- oh + c'jv+ c ivj + 0(h 3 )
(2p, 2

oah (c,vjp'j + 0cv (h 3 ) = h --- (civ'pj' + 0(h 3 )
2 A2 p, ict;

Thus ZmarW 19 Ip c9 + 0(h 3 )
3j7.W' 2p ax axj

Next consider the quadratic term.

Ob d = 2 (vi3 Xj)2

O.5(p +j =3 Ph 2)&(p, + p,)((X, - Xj)2 + rjh2 )2

2 2 2 + xipi+ 0(h 2 )
A +pj A +(P - ij~i 2i -xipý -- pi 2p?

2 2'
=i v- vj = Vi- V .. V = ' 'jv +Oh2

22

2 xv --- 'j + 0(h 2 )
(v23 X,j)2 = XI (V')2 _ X5, V7 + 0( 2)

Hence (v: Xt,) 2 _ 4j (vi')' X (P: (v)2 _i Vi")" + 0(h 4 )

~(pi + P,) ±i 1 2p?

So for the term that contains Trb

Sm,7rbWi' Oh / 2  Mj Rtj. m  (1 .'2"'j1

+(~;2p A~;) m, (( ?7 ,h2)2) wi'] }+ 0(h 4 )
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As before, the first sum is approximately p' and the second sum is approximately

-pi. Therefore.

N m w = h2 (vi p pi(v.)2 p vpi v'pi 4
Z . p76bWi, + --Pi + O(h+)
j=1It A

= Ih 2[Vl)2 + v'v:'] + O(h 4 )

2pi
-= [P (Vh)2 + 2p1vv' + 0(h 4 )

- h 2[pý(v)2]I + o(h 4 )2pi

Ths N W / h2 a t9aV) 21 4

Thus mrb -- 2p - p + O(h)
3=1

Finally this results in

N N N

-E •mj Wij = -- E mj 7r W'j -- E mj 7 rb W•,
j=1 j=1 j=l

ah a c -p dv Ph 2p a [ V \+ 3]2p ax ý a)p - + 0(h3 ).

2. Hernquist and Katz. This form does not require any derivation or consis-

tency analysis since it is given below (and in the literature) in differential form

pc I pv I Ph2 2(A.28)

For the SPH form, in the momentum and energy equations replace the P term with

P + 1H where the function 1Ii1 = H (xi, xj) is defined byp, 2

2= + 2 (A.29)

pi pJ2P:
a ahi pi ciIV -vj ,i3 h? pi (V v)? V j X j 0

qj = (h'p-4IV "(±/3-z.) (A.30)

0 otherwise
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note : (V.v), - 1 E m, (vi -v) W:,
Pi J

3. Lattanzio. It will be shown for the momentum, this form of the artificial

viscosity corresponds to

ah i9a /p d\ iha [e(9V\)2 1

_CP '9x (P Tgx, c2p P TX Yx " (A.31)

This form is very similar to the Monaghan version (P instead of pc and a factor of

C). Therefore, the derivation should follow exactly as in the Monaghan case, and

is not done here, other than to give the SPH form: In the momentum and energy

equations replace the 4 term with .(I +11) where the function H~ii = HI(x,, xj) is

defined by

Hij = -- mij + /304 (A.32)

.c((xi x j) +-x h-
/ULvi j= r -x) (A.33)

10 otherwise.

4. Wall Heating. There is currently only one form in use, attributed to Mon-

aghan (41). Although it is given in differential form in the literature, the consistency

for this one form will be shown here. The energy equation is modified as

De P' - + • (QVe). (A.34)

To implement this in the SPH energy equation, add an additional term, H, where

H =- m, _. - ,W'. (A.35)
Hi j=1 -•'0.5 (p, + Lpj) ((Xi- Xj)2 .+_77h2) ,1

q, = ah,c,8 IV.vI,+/3h(V.v); (A.36)
(V -V),= -I E mj (v. - vji) W:.i.(Vv.)0 = -p-Zm(sv)•

PS -
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The following procedure follows that for the Monaghan artificial viscosity quite

closely.

1 2 2 1 x,,p +0.5(p, + p) P +±(pt• " ' ) = -. + .• +0O(h 2 )0.( i+p) i+( i- xjpi + '" 2pi - xjjpý + '. pi 2p?

x 2 ..
e -- ej= ei - (ei -- xe' e4- -- e+...) = - -- e" + 0(h')

e- ej 1 xijpi " _ e2.,e Xe2

pi 2p 2 A P0.5(p, + pl) + z, pi 2

So the Hi term is now

H, = e: ] mj (qi + qj) Wi
H, j= + X(2 +1 7h2)11

Sp? e2&i e mj (q- +(i+qj) 2 + 7h 2 )WVj + 0(h 2 )

2 2

q+q = qi+(i-xjq -'i+"" = 2qi - xiq + •q ~2

So the Hi term now becomes

H, = 2 Mj ( _ _
PA j=l xi- + 012)Wi

__ (-q ___2q e _p 1q e:] ( xi"W'_ _ ___i_ _ 2 q j me'' N, j W+h2)'j + 0(h2 )

2ps 2 ii Ij=1 ?J +0

The summation terms were shown under the Monaghan artificial viscosity to ap-

proximate p• and -pi respectively. Substitute to obtain

2i ei ePi pi ( IHi -- 2qiq~e, + pi " p'i ] j (-_pi) + O(h 2)

H - [e 2 (2qip +q pi-qip )+e'(qipi)] + O(h2)
PPi

1

- [e (qipj)' +e:,'(qjpj)] + O(h2 )

I [e'(qipi)]' + O(h 2)

Pi

A-18



Thus H [(qp) + O(h2 )

If Q equals -qp the differential form is recovered plus terms of order h2 . Also note

that q has terms of order h and h2 in it, so the Q term goes to zero as h goes to

zero. Thus, this wall heating term is consistent.
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Appendix B. ADDITIONAL STABILITY NOTES

This appendix includes work related to the Stability Chapter (Chapter IV),

but the details were left out earlier.

B. 1 Stability for Several Equations

In the Chapter IV, one SPH form (probably the most popular) was shown to

have an unconditional instability. Further, this form can be simplified to appear

like those used by other analysts in 1,erforming stability analysis. In this section,

it is shown that the previous analysis applies to many different forms of the SPH

equations, not just the popular one. The forms considered are shown in equations

(B.1) - (13.13) for particle s

N

E, = m (v- - vjA W (B.1)
j=1

N

Ps = Ps j (v,,- vj) W'. (13.2)
3=1 P s

N Pi P,(3)

N rIvs = -2 EMi W53  (B.4)
j=1 PiPs

S =Ps (B.5)

e,= m : o-F) Wj (B.8)
N / i p

E mi (.,-) (v 5- vi) W, (13.7)

j=1

N p
E = i s mv- vj) W1.7 (B.9)
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•o= + (v - v3) w," (B.lO)

N -pp63= = ( - v s) W., (B.10)

j=1 PiPs

is = v, (B.12)

is = v, +E c mj Vj05 "). W51  (B.13)

Equations (B.1), (B.3), (B.10), and (B.12) make up the system previously studied.

The remainder are analyzed below:

1. Equation (B.2)

N mP. E j. - (,,. - ,,•) w;'i
•3= P~i

N
+ mi

3=1 P3 +4?,
N

+m. -+j (f.-fi+V,-I ,) ,t

j=1 P( 0. + ) M (fyo - V, + ,,. - ,,j) [w;' + (xo - xi) Will]

N

j=1 3

NN

-= [ ('5 -v ) w;• ,
=1 P + PjP

j=13= P3AjA

to obtain
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N-

f ij I p
P3

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by e•'k to obtain

m3  - vJ) (P, - .e(i- W' _- - ei(1-)k) W
+ P3

+ - j) (1 - ei(3-)k) xwN1.

Finally, changing notation and simplifying

0 M  E (F). - j) (j - P,e") W + -r E (1 - e W
L =0 L-~oil I- 1=-C P3  Wil

+ E [rn(fy, _ ij),)(1 _ ek)W,] x
L =-00 Pi3

Compared to Chapter IV, this form of the equation has an additional term (0 term)

in the amplification matr x. However, under the smooth data assumptions, this term

falls out. In fact, under these assumptions, the remaining term is

which is the same as in Chapter IV.

2. Equation (B.4)

N pp
=-2 E MI. P.3 1

j=1 PjPS
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This form is not a good choice for HVI problems. The square root term could be

imaginary. If the pressure field is quite smooth, a smooth transition from real to

zero to real again could occur. However, if it is not as smooth, or even worse near

a shock, this term would become imaginary. For these reasons, this form was not

pursued any further.

3. Equation (B.5)

N p
S= - ',m - 14"'8

j~1 PjPs

=,i, - __+__ m=,J%+ w;'

+ j=l Pi= m- (A) w+ C +

= -- mj• pi. •• •

j=1 p3

+ Aj(x8 - X,) W-l]
N

PjPs P+ [Psa PP

Then assume

+s A=x -- "kl- W;;:'

j=1 Pj PS 3=' jP p iP8  i .
.io, Pip,

to obtain
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= N A j A , ' ý i
M, -J2-- -2 W83 -peS ýý W;,

+1\'~ ppAW'

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by eisk to obtain

i, -•mj ei(i't W'-3 + --. _e'-} 6 i,:

j=1 IK$1O P SP

=jo I _

+P~s A ei(3-)k)X W;-.}.

Finally, changing notation and simplifying

b= [m -0 eilk AJ j [me -- ]

E A' I-(eletk) wi4

L i =- P•-.

Compared to Chapter IV, this form of the equation has the same number of terms

under the smooth data assumptions in the amplification matrix; however, they are

slightly different. Define G4 as

G4= m E_ eilk W,
l=-oo

then the eigenvalues obtained when substituting this equation in for the original

forms of the momentum equation are

A = o, o, ± - - + f )GG 4 + 4GG 2 - -
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This is further simplified with the uniform space assumption to find: A = 0, 0, ±v/---D

where D = D, + D2 and

D, = 4m-2-(,40 + 2 -_A) 0sin(lk)Wi) 2

2m-oD2 = :--A•1cos(1k))w:'.

This is almost exactly the same as before, and has the same instabilities.

4. Equation (B.6)

N (F + P.

• = - P+ ]mW3= 1 Pi P S' 3P " ]

0+bN- P. + ((
+ (C.I + 0j)(A W + (A) + ( -x

-- -- ___m_ m _ - _ u

N -( A + A ., + W '-, (: o + (ý C [ + )X , W C) .+3

____:p •. I 1
+E +

j=1l

p= 2  p. # J2 .

Assume

N 3 ( A . A jN m.+ a , j A j OE,-•' mj - -J p.3

(0o = Pj PP.,

to obtain

B-6



N= -( 4, A+A . B, " O+ ,

C3M + 1
E +j+ -115 +-•°' + "i+ '(v,. ,•- ;-.

P., 0. - PI P0,

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by e is to obtain

N A, + A. i4"- s__ +. ( eO -A,E( M' e'~' + '

+C , ) A , + "A "

0, Pj Ps

Finally, changing notation and simplifying

E (mhI (Bielk+B)/ + b.)Weik + C,) r

+ -m 1 (A, + ) (1- e) W]

This form of the equation reduces to exactly the same as the original in Chapter IV

under the smooth data assumptions.

5. Equations (B.7), (B.8), (B.9)

These three equations are all very similar and using the letters: a and /

appropriately (as seen later) to analyze

N p
E M ) s (v,- ) W'

N

j=)-
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N (A. + B.O. + Cckea) (' ,-v)W X ~
+ (mj 0.W + V.( )[W.i( + ( X)w) ]

M (140 + [E-

j=l P PCP3 PczP5 a

+..- vj)W~l + (fl. - X ')w;]

+=. m. (O,-;Oj)W3 m+ --. -DMX) Xj) Wiil

NA N

Es mi V- j) MW+ i- i_.

(= A0 O)
-~~~D -200'-i3 k WiA + A"

Pa A'2 (.-v3)wiP

. )m) (u. - uXi)W .i

+ (OP- C0 ' + (CA A0

Assume

j=1 Pao

to obtain

j p.2# _0 - -~~~;jpc, jOW

_ (v5 -)W-, + C-~ A., (fs~(s-)

So under the simplifying assumptions for smooth data and uniform spacing, all the

terms drop out except

-j 0v - )W;-

Now note for each of the equations

equation (B.7) a = s, /3=s

equation (B.8) a = s, 3=j
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equation(B.9) : a=j, 3=j.

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by esk, and simplify

the notation to obtain the same result for all three equations

m= [-mAE (1- e ik)w] v.

Therefore, these forms of the equations reduce to exactly the same as the original in

Chapter IV under the smooth data assumptions.

6. Equation (B.11)

N 
P
P I P.

As with the momentum equation, this form is not a good choice for HVI problems.

The square root term could be imaginary. If the pressure field is quite smooth, a

smooth transition from real to zero to real again could occur. However, if it is not as

smooth, or even worse near a shock, this term would become imaginary. For these

reasons, this form was not pursued any further.

7. Equation (B.13)

N Mi-vj - vs •

xs = vs + p ,)

N (fs -- "I + _-9 Vj) W
xj= +. 5 (+s + Pw + 0+ i)

N [ 1 + 1

f= ++vs-2cE mj(f38 -vi+v.-vA) Ps+ j (ps-+-j)2J [Wi

+(xs - X,) w:-,3
N f), -- J). W; -- i

= 5,+v,-2c. =E mj[•7• / (0. + o)2(+ +€A)W;j
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P. + P+

Assume
•o= o- 2•m 3  ± ¢1 6,

to obtain

N -V 3 -V5 •14,•= vo-2•Z i ,• (T_ )••+ )wSJ + + 1-----
.i=1v. (x.- 2f E .++= +- + f-,

The system is now linear in the perturbations so that Fourier analysis may be applied.

Substitute and then divide both sides of the resulting equations by e ik to obtain

N vs -- W + 1i-- ei(-s)k VW-

v - E j ]+

+-v - Vi(1 - e'(j-s)k) X W:3jAP + Pj

Finally, changing notation and simplifying

[2 f 0-- j +eilk) ..... W, +

==_0 0 (P. + I (=L00 ]
+ [ m v- (1- eik) W1] x

+ 2fm E -+w;.
I • =-00A.+jI

This form of the equation is quite different than the original one found in Chapter IV.

But applying the assumptions under smooth data analysis it reduces to the following

1 = I E(I - e W) (B.14)
L. P =-0
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In calculating the eigenvalues using this new form. the same results are obtained as

the original form with one important change. If c in the term above is large enough

it can offset the PW" instability. The eigenvalues are

S= 0,0, ± - (A C + B )G1 G 2 - 2A G 3 (1 - G 5 ) (B.1-5)

where G5 = m r (1-e lk)Wi . (B.16)
1=-00

The Q, term is always positive and under uniform spacing, real. Obviously this

form needs to be investigated further. This is done is the Techniques for Obtaining

Linearized Stability Section of the Stability Chapter (IV).

B.2 Considerations on Two Equations of State

In the Stability Chapter (IV) it was shown that the instability had two parts,

labeled D1 and D 2. The D2 part contained the PW" instability. The D1 part

vanishes at minimum wavelengths. It is necessary to know if this Lerm is going to be

a problem for longer wavelengths. So, in this section a look closer at this Di term is

done for two specific equations of state: the Ideal Gas Law and the Mie - Griineisen.

B.2.1 Ideal Gas Law. The form of the Ideal Gas Law Equation of State

(EOS) used here is

P = ([- 1)pe, (B.17)

where F is a material constant. From this form for stability

P(p,e) = P(A+¢, +e) = -)(e+ )

= (F-1)#e + (F-1)- + (-00C-.
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So from our notation in the Stability Chapter (P = A + &p + Ce)

A = (F-1)ti•

/B = (r- 1)•

C = (F-1)•.

Use the value for D1 obtained in equation (4.14) to find

D1 = 4m2 (A2 ý + p2/ - 2- A) sin(lk) Wt[

- 4M2 sin(lk) W)2 [(F- 1)f( - (r+ - 1), (- 2f(- 1)2 -

=- 2) (0 sin(lk) W) 2

Assume that E follows convention and is taken as always positive (otherwise the form

of P must change). All the other terms: m, fi, and the square term are all real and

positive, except possibly the r terms. r itself is always positive, which implies that

D, is non-negative for r < 1 or r > 2; making the D, term a stabilizing term for

most values of F. However, for values of F between 1 and 2, the D, term is negative

and, therefore, could add to the instability at higher wavelengths.

B.2.2 Mie - Griineisen. The form of the Mie - Grfineisen Equation of State

(EOS) used here is

P = _r + rp(e-e,) (B.I8)

, J + (S.- 1)p2 + (So- 1)(3So - I)ps3 if u > 0 (Compression) (B.19)

1 /1 if it < 0 (Tension)

= P -1(B.20)
Po

r = POFo, (B.21)
P
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where Fo, S., c., and pC are material constants and eo is the initial energy. The

following is needed for the stability analysis

P + -P~o _P-Po 4)

Pa PC PC Pa Pa
P4= Ph+Ph.

Use this form for stability to obtain

P(p,e) = P(p+6, +e) = Ph' + F1po(e-eo)

- po~ [2 -r.(I P-) + ro PC(eo)}

+ 2-Ph 2 [ 2 2- ro 1 + (ropeo)

= ++Bq+Ce.

The A term can be easily seen as the first term in braces since it just equates to

P(p, e). The rest falls in place because Ph is just a function of p, not e. This implies

that Ph is a function of p and Ah is a function of 6. The equation, C = FopC, is

directly obtained from the above equation. To find an exact value for i3 a closer

look at Ph is needed. Both the tension and compression cases are handled as one,

by taking So = 1 for the tension case.

2 - + 2 +

Po
/13 =2+#3 =/3 + 3A

Pa

p,= [ + (So- 1)ft2 + (S.- 1)(3S - 1)#'3]

11+ 2(S0 -1)a + 3(So0 1)(3So 1) A2]46
= P+ 'Ph
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Now obtain an equation for/B

[ = + (S.- + (S. - 1)(3So-i2 #2

L-. 2 - 1o 1 - 2(So,- 1p + 3(So- 1)(3So,- 1) 2

For the tension case (At < 0 and S0 = 1) one can fairly quickly see that b is positive,

but it is not as obvious for the compression case. So each of these cases is investigated

separately.

1. Tension. Use the value for D1 obtained in equation (4.14) to obtain

D, =4-m 2 (AO + Pi2B - 2•/A) sin(lk) W 2

p4
= 4m sin(lk)W) W AF4P[ r, P 2 P (2 c - po)

p40 2 P0

+ - 2 - F0 - - 20A

- sin(lk) Wl' [A(ro P. - 2 p) + L. (2 A + r 0(P~-2)

Assume that iý follows convention and is taken as always positive (otherwise the

form of P must change). For some values of p and e. the D, term is negative.

However, considering several different metals (Aluminum, Copper, and Lead) that

have various values for the constants leads to the results that for p down to about

0.5po, D1 was positive. Results are shown in table B.1. Of course, for density that

low the material probably changed phase and may need a different EOS or constants.

Hence, for realistic values of p in tension, the D1 term should be non-negative, and

therefore does not unstabilize the method.

B-14



NMetali Fo I p.o coI S. D,>0forp>1I

AL 1.68 2.71 0.535 1.34 1.25
CU 2.00 8.92 0.391 1.51 4.50
PB 2.03 11.35 0.203 1.47 6.00

Table B.1 Mie-Gruneisen Tension Results

2. Compression. Once again, use the value for D, obtained in equation (4.14)

to obtain

D = - 04 (AC + -2,_A) sin(lk) W,'

-4n2 ( 0 sin(lk) W )2 A(r,,p. - 2 0)

0 2 c 2 r of
0-' [f0 + (So- 1) A2+ (S.o- 1) (3S,,- 1)•32

-2 2 r, 1 P0 +)/2

-2 - 1 -- 1 1 + 2(So -1)j+ 3(So 1)(3So-1) .

Assume that ý follows convention and is taken as always positive (otherwise the form

of P must change). For some values or p and e the D1 term is negative. However,

once again several different metals (Aluminum, Copper, and Lead) were considered

that had various values for the constants and found that for p up to about 2po, D1

was positive. Results may be seen in table B.2. Of course, for density that high

the material probably changed phase and may need a different EOS or constants.

Hence, for realistic values of p in compression the D, term should be non-negative,

and therefore does not unstabilize the method.

[Metal1 [ 1 Pol cISo  D,>Oforp<0
AL 1.68 2.71 0.535 1.34 5.00
CU 2.00 8.92 0.391 1.51 15.00
PB 2.03 11.35 0.203 1.47 16.00

Table B.2 Mie-Gruneisen Compression Results
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Appendix C. ADDITIONAL KERNEL NOTES

This appendix includes material related to the Kernels Chapter (Chapter VI).

C.I Kernels Analyzed

The kernels shown in Table C.1 are used in the analysis found in Chapter VI.

All kernels in this table take the form W(x, h) = !K(f) = ýA'(f). Graphs of all

these kernels and their first derivative are shown in Figures C.1-C.10.

# IName ] Type] k(u) J 11-1Dc) c J
I Gaussian B e` 2  3 11 32 3 3f•u•2U2•, + 2 Jul' if o < Jul <ý 1 2
2 W4 B-Spline B 2 4  2

__(2-Jul)' if I < JuI < 2 3

3 Cosine B (1 - R)(1 + cos(")) 21r'
___ __ __ ___ __4_ 2-__ __________________ 8(r +3)

4 Exponential H e-Ilu - e-9 9 0.500618
5 ,. - 2 Exponential H e- 4 51j 1 - e- 9  2 2.250555
6 I/X, 2 H - + 2 7.337061

2+1uI 16 _ _ _ _ _

7 I/X, 4 H 4+1ul + u36 2 30.163694
8 1/X, 10 H 1 + IHL,4 2 283.125508

__________________10+Iul 144

9 -X 2  H !(Jul- 2)' 2 0.375
10 -x - e-' P 2 -- ul - e-I1 + e-2  2 0.355617
11 4-. 2  P 4-u 2  2 0.09375
12 8-X 3  P 8-Xu13  2 0.041667
13 K - 2 Gaussian B e-2.25u -_ e-9 2 0.846657
14 L Gaussian B (2 - luI)e-u2  2 0.392674
15 Q Gaussian B (1 - uJ U2  2 0.643998
16 T Gaussian B e-u' - e-4 2 0.591401
17 Quartic-1 B (2 + 3Iu)(2 - Iul)3  2 0.0390625
18 Quartic-2 B 16 - 81uJ3 + 3U4 2 0.0260417

Table C.I Kernels Analyzed
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Figure C.1 Bell Shaped Kernels
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Figure C.2 Derivatives of Bell Shaped Kernels
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Figure C.3 Hyperbolic Shaped Kernels
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Figure C.4 Derivatives of Hyperbolic Shaped Kernels
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Figure C.5 Parabolic Shaped Kernels
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Figure C.6 Derivatives of Parabolic Shaped Kernels
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Figure C.7 Additional Bell Shaped Kernels
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Figure C.8 Derivatives of Additional Bell Shaped Kernels
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Figure C.9 Additional Bell Shaped Kernels
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Figure C.10 Derivatives of Additional Bell Shaped Kernels
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C.2 Kernel Test 1 Plots

Gaussian Kernel
S

0.25 0.5 0.75 2- 1.- ,5 l.5 1.75 2 R

0.9

0.8 ,

0.7 55

0.6

0.5 %

0.4

Figure C.11 Gaussian Kernel (1) Test 1, R =Axh

B Spline Kernels

0.8

0.6

0.4

0.2 R

0.25 0.5 0.75 1.25 1.5 1.75 2

Figure C.12 W4 B-Spline Kernel (2) Test 1, R = Ax/h
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Cosine KernelS

0.8

0.6

0.4

0.2

R
0.25 0.5 0.75 1.25 1.5 1.75 2

Figure C.13 Cosine Kernel (3) Test 1, R = Ax/h

Exponential Kernel
S

0-:2s-Q.5 0.75 1.25 1.5 1.75 2 R

".-Q. 95

0.9 -.

0.85

0.8

0.75

Figure C.14 Exponential Kernel (4) Test 1, R = Ax/h
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k-2 Exponential KernelS

0.8

0.6

% 0.4

s~0 . 4
0.2"-

0.25 0.5 0.75 1.25 1.5 1.75 2

Figure C.15 k-2 Exponential Kernel (5) Test 1, R =Axh

I/x,UO=2, Kernel

0.8eI'.'

0.6

0.4 "

0.2

R

0 ..25 0.5 . .. . 1.25 1.5 1.75 - R

Figure C.16 l/X, Uo=2 Kernel (6) Test 1, R = Ax/h
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1/x,uO=4, Kernel

0. --- -

0.6

0.4

0.2

R
0.25 0.5 0.75 1.25 1.5 1.75 2

Figure C.17 1/X, Uo=4 Kernel (7) Test 1, R = Ax/h

l/xu0=0, Kernel

0.6

0.4

0.2

R

0.25 0.5 0.75 1.25 1.5 1.75 2

Figure C.18 1/X, Uo=10 Kernel (8) Test 1, R = Ax/h
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x^2 Kernel
S

0.6

0.4

0.2

0.25 0.5 0.75 1.25 1.5 1.75 2

Figure C.19 Kernel (9) Test 1, R =Axh

-x-e^x Kernel
S

2.5

/

/

2

1 4%

I~ ,/

'1. .7 1 .25' 1.5 1.75 2

It I /

0.5

Figure C.20 Kernel (10) Test 1, R = Ax/h
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-x^uO,uO=2, Kernel

3

2.5 i

2

I I

4 1'S
'1Ij#1 I ' ) , /

SI Ii I

1.5. 75

1/1

0. 5

Figure C.21 Kernel (11) Test 1, R = Ax/h

-x'u0, uOC=3, Kernel

4

3.5 /

3 I

2.5 ,

* III

* ,,' 1,.S5,
.. , •, /, / , ,/ |.

"•n~',iO,5, ,J.7S 1.2•," 1.5 1.75 2

Figure C.22 Kernel (12) Test 1, R? = x/h
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-ussian KernelS
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0.4

0.2

l l I i . . . ... . .. . ... _____ i ... - - -•T -'- R

0.25 0.5 0.75 1.25 - 5 2

Figure C.23 k-2 Gaussian Kernel (13) Test 1, R = Ax/h

L Gaussian Kernels

R
0.25 -. 5 0., 1.25 1.5 1.75 2

0.8
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0.2

Figure C.24 L Gaussian Kernel (14) Test 1, R = Ax/h
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Q Gaussian Kernel

0.2S5 0-7 5- ---.. ,2 5 1.5 1.75 2 R
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Figure C.25 Q Gaussian Kernel (15) Test 1, R = Ax/h

T Gaussian Kernel
S

•"'' " '" "______"- __ ' __ 'l.' __ R
VVOiSIDc'75 "1-.25, 1.5 1.75 2
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0.7

0.6

0.5

0.4

Figure C.26 T Gaussian Kernel (16) Test 1, R = x~
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Quartic-i Kernel
S

---- , - S- --1-.--""

0.8 .,

0.6'

0.4

0.2%
R

0.25 0.5 0.75 1.25 1.5 1.75 2 R

Figure C.27 Quartic-1 Kernel (17) Test 1, R =Axh

Quartic-2 Kernel
s
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p s 5

1.25
/ S

0.75' ,
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R

0.25 0.5 0.75 1.25 1.5 1.75 2

Figure C.28 Quartic-2 Kernel (18) Test 1, R = Ax/h
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C.3 Higher Order Kernel Results

The kernels shown in Table C.2 are used in the analysis found in Chapter VI.

All kernels in this table take the form W(x, h) = !K(!!) •/K(f). Graphs of all

these kernels and their first derivative are shown in Figures C.29-C.30.

ffName K A(u) Ic I 1-D c,

Super-Gaussian - u2 )e-u2 3 _ IF2

1 147.- 2 1 881 i3
Enhanced B-Splines 4< 122 9'(2 - lJu) (49 - 471ul) if 1 < Jul <__ 2 18

Super-Gaussian 2 (1.49624 - u2)e- 3 0.566214

Table C.2 One-Dimensional Higher Order kernels
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Figure C.29 Higher Order Kernels
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Figure C-30 Derivatives of Higher Order Kernels
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Test I Plots for Higher Order Kernels

Super Gaussian Kernel
S

0.8 .

0.6

0.4 N,

0.2 '

%

.... . .. . .. .. . .. . .. . dx/h0.25s 0.5 0.75 1.25 1.5',1.75 2
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-0.4 "

Figure C.31 Super-Gaussian Kernel Test 1, R = Ax/h

Enhanced B Spline Kernel
S

0.5

0.25 0.5 0.75 1.251.5 1.7 5
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-0.5

%

-1 5 I

Figure C.32 Enhanced B-Spline Kernel Test 1, R =Axh
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Super Gaussian 2 Kernel
S

0.8 ,

0.6,

0.4

0.2 %

0.25 0.5 0.75 1. 2S 1.5" 1.75 2 d/

-0.2

-0.4

Figure C.33 Super-Gaussian 2 Kernel Test 2, R = Ax/h

Tables C.3 and C.4 show the 11 and 12 results from Test 3 in Chapter VI for

the Higher Order Kernels. This data results from using symmetric kernels on the

three test functions for all 3 kernels.

[Name j Type IPolynomial Sine Step
Super-Gaussian B 0.018911 0.024206 1.785054
Enhanced B-Spline B 0.087208 0.074404 1.950188
Super-Gaussian 2 B 0.018911 0.024193 1.786731

Table C.3 Avg 11 Rel Error Norms for Higher Order Kernel Test 3

[Name ] Type I Polynomial ISine Step [I
Super-Gaussian B 0.042776 0.054131 2.939078
Enhanced B-Spline B 0.129249 0.111414 3.231267
Super-Gaussian 2 B 0.042970 0.054224 2.941180

Table C.4 Avg 12 Rel Error Norms for Higher Order Kernel Test 3
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C.4 Kernel Test 3 Results

Tables C.5 and C.6 show the 11 and 12 results from Test 3 in Chapter VI.

This data results from using symmetric kernels on the three test functions for all 18

kernels.

D# Name [Type [Polynomial Sine Step
1 Gaussian B 0.007119 0.078705 1.525396
2 W4 B-Splines B 0.013728 0.057164 1.531404
3 Cosine B 0.028616 0.058633 1.561539
4 Exponential H 0.088975 0.281294 1.419907
*5 K - 2 Exponential H 0.507906 0.521096 1.015792
6 1/X, 2 H 0.127125 0.175582 1.365669
7 l/X, 4 H 0.103917 0.156133 1.395861
8 l/X, 10 H 0.089925 0.144996 1.414412
9 -X 2  H 0.080997 0.138340 1.426459
10 -x - e-e P 0.238686 0.213771 1.644485
11 P 0.288949 0.255279 1.676442
12 8-X 3  P 0.380648 0.331688 1.735950
13 K - 2 Gaussian B 0.090605 0.126439 1.422764
14 L Gaussian B 0.061084 0.108767 1.451667
15 Q Gaussian B 0.012795 0.064329 1.524989
16 T Gaussian B 0.032013 0.073000 1.540140
17 Quartic-1 B 0.020412 0.068948 1.521352
18 Quartic-2 B 0.087969 0.117343 1.532017

Table C.5 Avg 11 Relative Error Norms for Kernel Test 3
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# I Name Type! Polynomial [Sine Step

1 Gaussian B 0.007985 0.081705 2.310485
2 W4 B-Spline B 0.020354 0.064281 2.522221
3 Cosine B 0.045007 0.065928 2.433239
4 Exponential H 0.132289 0.291637 1.699878
.5 K - 2 Exponential H 0.566931 0.579755 1.987313
6 1/X, 2 H 0.156022 0.201873 2.203153
7 1/X, 4 H 0.130337 0.178867 2.216029
8 I/X, 10 H 0.115533 0.165679 2.218148
9 -X 2  H 0.106990 0.158004 2.215146
10 -x - c-, P 0.292461 0.266744 2.123883
11 4 - X' P 0.354653 0.313852 2.144938
12 8 - X3 P 0.469350 0.402054 2.231259
13 K - 2 Gaussian B 0.164966 0.193598 2.569320
14 L Gaussian B 0.084140 0.129441 2.420860
15 Q Gaussian B 0.019560 0.070414 2.466266
16 T Gaussian B 0.040621 0.082925 2.358863
17 Quartic-1 B 0.030735 0.075212 2.425873
18 Quartic-2 B 0.124879 0.154617 2.114397

Table C.6 Avg 12 Relative Error Norms for Kernel Test 3
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Tables C.7 and C.8 show the 11 and 12 results from Test 3 Step function only

for the truncated 1-sided kernels.

# Name [Type IAdaptive Backward [Forward

I Gaussian B 35.770172 25.346821 50.589466
2 W4 B-Spline B 39.016865 28.821920 57.531830
3 Cosine B 36.007061 26.473532 52.838074
4 Exponential H 27.388069 17.761250 35.458717
5 K - 2 Exponential H 33.400810 25.695364 51.122055
6 1/X, 2 H 36.192120 26.940407 53.760464
7 l/X, 4 H 35.764687 26.554712 52.992195
8 1/X, 10 H 35.311211 26.171162 52.227161
9 -X 2  H 61.610802 25.816395 123.611145
10 -x - e-' P 26.363857 19.140060 38.176891
11 4 - X 2  P 24.932720 18.043724 35.980412
12 8 - X3 P 22.735289 16.362419 32.602768
13 K - 2 Gaussian B 42.133472 31.433580 62.741013
14 L Gaussian B 38.926849 28.889837 57.663372
15 Q Gaussian B 37.972710 28.026678 55.942650
16 T Gaussian B 35.350651 26.005360 51.903835
17 Quartic-1 B 36.938557 27.236271 54.361706
18 Quartic-2 B 27.964264 20.365017 40.628468

Table C.7 Avg 11 Error Norms for Test 3, Step Function, Truncated Kernels
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# Name Type Adaptive BackwardI Forward
I Gaussian B 35.266060 24.567732 48.868141
2 W4 B-Spline B 38.498535 28.191751 56.090488
3 Cosine B 35.026104 25.532019 50.773285
4 Exponential H 27.969044 17.559801 34.975266
3 te - 2 Exponential H 46.150829 34.892223 69.564873
6 1/X, 2 H 37.664139 27.824171 55.395535
7 1/X, 4 H 36.671600 27.022966 53.790264
8 l/X, 10 H 35.873276 26.387548 52.517906
9 -X2 H 71.473541 25.868845 121.344543
10 -x - e-x P 25.929104 18.698484 37.138481
11 4 - X2 P 24.715145 17.764969 35.265335
12 8 - X3 P 23.103941 16.503397 32.725090
13 K - 2 Gaussian B 43.917507 32.446465 64.604774
14 L Gaussian B 39.424267 29.015673 57.754101
15 Q Gaussian B 37.427788 27.388683 54.491085
16 T Gaussian B 34.604794 25.248262 50.220360
17 Quartic-1 B 36.296047 26.537476 52.789551
18 Quartic-2 B 26.995367 19.515217 38.753639

Table C.8 Avg 12 Error Norms for Test 3, Step Function, Truncated Kernels
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Tables C.9 and C.10 show the 11 and 12 results from Test 3 Step function only

for the condensed 1-sided kernels.

# Name [Type ;Adaptive I Backward [ Forward
1 Gaussian B 4.627463 4.171862 4.224389
2 W4 B-Spline B 6.600931 6.091682 6.125278
3 Cosine B 3.383625 3.269625 3.266023
4 Exponential H 11.922575 8.278474 8.459723
5 K - 2 Exponential H 138.913773 125.496758 125.621735
6 I/X, 2 H 29.136833 26.358891 26.408539
7 I/X, 4 H 23.274830 21.076603 21.123383
8 1/X, 10 H 19.664471 17.825077 17.871046

_X 2  H 57.373978 61.558681 37.497616
10 -x - e-x P 5.907393 5.799411 5.962747
11 4 - X 2  P 7.691435 7.576866 7.741799
12 8 - X 3  P 11.094380 10.981340 11.147852
13 K - 2 Gaussian B 16.707014 15.135881 15.176677
14 L Gaussian B 15.705833 14.245801 14.293818
15 Q Gaussian B 5.923904 5.493348 5.530460
16 T Gaussian B 3.884053 3.635837 3.696250
17 Quartic-1 B 5.542394 5.146575 5.173334
18 Quartic-2 B 4.433723 4.227802 4.134763

Table C.9 Avg 11 Error Norms for Test 3, Step Function, Condensed Kernels
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_1_# Name ]Type Adaptive TBackward Forward
1 Gaussian B 6.777384 6.314503 6.375536
2 W4 B-Spline B 9.376309 8.873537 8.860847
3 Cosine B 5.213538 5.012552 4.963362
4 Exponential H 12.061853 9.487526 9.572164
5 r. - 2 Exponential H 164.067596 153.782288 153.790833
6 1/X, 2 H 31.930933 29.944818 29.940264
7 1/X, 4 H 25.548899 23.976448 23.968622
8 1/X, 10 H 21.664978 20.347097 20.336092
9 -X2 H 56.435982 60.251125 37.391243
10 -X - e-' P 6.452044 6.459867 6.633987
11 4 - X 2  P 8.589965 8.557788 8.728765
12 8 - X 3  P 12.505659 12.429585 12.599248
13 Pc - 2 Gaussian B 21.589687 20.246670 20.248573
14 L Gaussian B 17.908546 16.816137 16.813013
15 Q Gaussian B 8.417760 7.980781 7.969928
16 T Gaussian B 5.465341 5.229952 5.226177
17 Quartic-1 B 7.826464 7.436666 7.407992
18 Quartic-2 B 5.515248 5.174659 5.055277

Table C.10 Avg 12 Error Norms for Test 3, Step Function, Condensed Kernels
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C.5 Shock Tube Results for Kernels

The data shown in Table C. 11 shows 11 and 12 norms for selected kernels applied

to the Riemann Shock Tube Problem.

Kernel I Cycle I Norm Density Velocity Energy Pressure
2 625 1 .119143E-01 .351724E-01 .860845E-02 .901961E-02
2 625 2 .193286E-01 .775102E-01 .336564E-01 .146037E-01
2 617 1 .123399E-01 .366288E-01 .887474E-02 .944356E-02
2 617 2 .199570E-01 .750054E-01 .331870E-01 .160789E-01
3 634 1 .103854E-01 .344368E-01 .912052E-02 .821342E-02
3 634 2 .196988E-01 .784168E-01 .341025E-01 .161296E-01
9 Abort
10 Abort
12 Abort
15 606 1 .879550E-02 .342297E-01 .854017E-02 .593626E-02
15 606 2 .188066E-01 .796244E-01 .341390E-01 .137457E-01
16 646 1 .103807E-01 .365653E-01 .873685E-02 .753665E-02
16 646 2 .194426E-01 .814887E-01 .342294E-01 .144174E-01
17 611 1 .109943E-01 .353594E-01 .856442E-02 .833809E-i2
17 611 2 .190161E-01 .763600E-01 .332472E-01 .145838E-01
18 Abort

Table C.11 Relative Error Norms for Selected Kernels
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Appendix D. HYBRID CALCULATIONS

D. 1 Introduction

This appendix contains the test results from the hybrid methods discussed in

Chapter VIII applied to Riemann Shock Tube Problem. For each method a table

of the relative error norms is included. The formulas for these norms are shown in

equations (8.10) - (8.12). As described earlier the norms are calculated based on

either 1000 evenly spaced points or the particles as the points for a comparison. On

each of the plots, the analytic solution is shown. In the tables to follow, the test

column key is: N - Normal 600 particles, Z - Extra 816 particles, H - Variable h, or

A - Always average.

D.2 Baseline

Points Test I Norm I Density Velocity Energy Pressure
1000 N 1 .306879D-01 .138161D+00 .174816D-01 .349231D-01
1000 N 2 .508795D-01 .174294D+00 .514047D-01 .543121D-01
1000 N c0 .181351D+00 .768014D+00 .405288D+00 .180250D+00
part N 1 .302635D-01 .130508D+00 .229058D-01 .326225D-01
part N 2 .784147D-01 .166399D+00 .791777D-01 .774897D-01
part N 0o .100000D+01 .751902D+00 .876105D+00 .100000D+01
1000 E 1 .572092D-02 .358461D-01 .431351D-02 .691356D-02
1000 E 2 .133659D-01 .907235D-01 .200159D-01 .164215D-01
1000 E 00 .724986D-01 .652194D+00 .290391D+00 .100370D+00
part E 1 .775876D-02 .361730D-01 .661709D-02 .928497D-02
part E 2 .542997D-01 .102223D+00 .433878D-01 .561397D-01
part E oo .100000D+01 .680452D+00 .876105D+00 .100000D+01

Table D.1 Relative Error Norms for Baseline
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Figure D.A Baseline Shock Tube Results

D-2



Internal Energy vs. X

Calculation Analytic

NP = 600

__2.5 _ Time =0.10

Iter =665

2 .0 - .............................

i Ii ' ii II Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Pressure vs. X

Calculation Analytic

1.0- I

0.75- NP =600

- Time =0.10

05- :Iter = 665a0.5

0.25 - -

f I I .... T ..... I ..... I-] Baseline
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure D.2 Baseline Shock Tube Results
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Figure D.3 Baseline Shock Tube Results - Extra Particles
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Figure D.4 Baseline Shock Tube Results - Extra Particles
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D.3 Method 2

Points Test [Norm Density Velocity Energy Pressure

1000 N 1 .272889E-01 .191943E+00 .244260E-01 .342833E-01
1000 N 2 .500100E-01 .322617E+00 .709577E-01 .626991E-01
1000 N zO .140617E+00 .100102E+01 .308587E+00 .203194E+00
part N 1 .264217E-01 .183844E+00 .330583E-01 .332332E-01
part N 2 .759511E-01 .306687E+00 .918251E-01 .846328E-01
part N oc .100000E+01 .100102E+01 .876105E+00 .100000E+01
1000 E 1 .126022E-01 .811757E-01 .166214E-01 .128609E-01
1000 E 2 .305912E-01 .236765E+00 .616357E-01 .386207E-01
1000 E Oc .140603E+00 .100101E+01 .313184E+00 .203176E+00
part E 1 .199853E-01 .670681E-01 .312255E-01 .143112E-01
part E 2 .650136E-01 .217061E+00 .905540E-01 .657909E-01
part E oc .100000E+01 .100141E+01 .876105E+00 .100000E+01

1000 H 1 .129561E-01 .102615E+00 .219245E-01 .169354E-01
1000 H 2 .334514E-01 .266829E+00 .729890E-01 .431817E-01
1000 H co .141297E+00 .100476E+01 .353619E+00 .205409E+00
part H 1 .191410E-01 .927628E-01 .359943E-01 .203850E-01
part H 2 .723576E-01 .254639E+00 .102423E+00 .753285E-01
part H oo .100000E+01 .100485E+01 .876105E+00 .100000E+01

Table D.2 Relative Error Norms for Method 2
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Figure D.5 Shock Tube Results - Method 2
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Figure D.7 Shock Tube Results - Method 2 - Extra Particles
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Figure D.9 Shock Tube Results - Method 2 - Variable h
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D.4 Methods 4, 6. and 8

Points Test [Norm ]Density Velocity Energy [Pressure

1000 N I .283069D-01 .205381D+00 .251389D-01 I .347989D-01
1000 N 2 .526087D-01 .361139D+00 .745590D-01 .683318D-01
1000 N 00 .140611D+00 .100102D+01 .310291D+00 .203196D+00
part N 1 .275758D-01 .195260D+00 .294965D-01 .290924D-01
part N 2 .780543D-01 .345100D+00 .892641D-01 .869584D-01
part N oc .100000D+01 .100112D+01 .876105D+00 .100000D+01
1000 A 1 .303552D-01 .191807D+00 .370719D-01 .406586D-01
1000 A 2 .502913D-01 .361574D+00 .981243D-01 .691604D-01
1000 A 00 .141798D+00 .101271D+01 .367483D+00 .207433D+00
part A 1 .327297D-01 .189121D+00 .530991D-01 .402106D-01
part A 2 .784696D-01 .347643D+00 .125065D+00 .897604D-01
part A co .100000D+01 .101320D+01 .876105D+00 .100000D+01
1000 E 1 .162784D-01 .137771D+00 .175494D-01 .194683D-01
1000 E 2 .362037D-01 .309025D+00 .634948D-01 .485241D-01
1000 E c0 .140609D+00 .100131D+01 .311787D+00 .203172D+00
part E 1 .221256D-01 .118829D+00 .255566D-01 .217069D-01
part E 2 .664389D-01 .284307D+00 .806376D-01 .719843D-01
part E co .100000D+01 .100140D+01 .876105D+00 .100000D+01

Table D.3 Relative Error Norms for Method 4

Points j Test [Norm [Density Velocity Energy Pressure

1000 N 1 .320046D-01 .244760D+00 .280627D-01 .392781D-01
1000 N 2 .576079D-01 .406452D+00 .810759D-01 .749086D-01
1000 N c0 .140631D+00 .100213D+01 .312249D+00 .203236D+00
part N 1 .314685D-01 .232772D+00 .326706D-01 .333819D-01
part N 2 .810679D-01 .388575D+00 .949093D-01 .916139D-01
part N cc .100000D+01 .100259D+01 .876105D+00 .100000D+01

Table D.4 Relative Error Norms for Method 6
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Points I Test"I Norm Density Velocity Energy Pressure
1000 N I .280756E-01 .193621E+00 .238426E-01 .349017E-01
1000 N 2 .520783E-01 .336727E+00 .690458E-01 .661071E-01
1000 N xc .140695E+00 .100210E+01 .313196E+00 .203416E+00
part N 1 .262176E-01 .181903E+00 .285280E-01 .296929E-01
part N 2 .769434E-01 .319691E+00 .844894E-01 .850875E-01
part N oc .100000E+01 .100247E+01 .876105E+00 .100000E+01

1000 E 1 .123757E-01 .950932E-01 .139468E-01 .138385E-01
1000 E 2 .312280E-01 .264959E+00 .570272E-01 .411868E-01
IC00 E CC .140709E+00 .100424E+01 .316054E+00 .203306E+00
part E I .190226E-01 .815595E-01 .220675E-01 .164351E-01
part E 2 .639188E-01 .242847E+00 .759615E-01 .672266E-01
part E oo .IOOOOOE+01 .100534E+01 .876105E+00 .100000E+01

Table D.5 Relative Error Norms for Method 8
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Figure D.11 Shock Tube Results - Method 4
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Figure D.13 Shock Tube Results - Method 4 - Always Average
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Figure D.14 Shock Tube Results - Method 4 - Always Average
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Figure D.15 Shock Tube Results - Method 4 - Extra Particles
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Figure D.17 Shock Tube Results - Method 6

D-21



Internal Energy vs. X

Calculation Analytic

2.8-

NP=600

X Time =0.10
wu 2.4-

j . Iter = 345
E2.2-
C

2 .0 - . ....................

1.8- l Method_3

0.0 0.25 0.5 0.75 1.0
X-Coordinates

Pressure vs. X

Calculation Analytic

1.0-

0.75- NP =600

T Time =0.10
:3"

0.5- Iter =345

0.25-

i " T- Method_3
0.0 0.25 0.5 0.75 1.0

X-Coordinates

Figure D.18 Shock Tube Results - Method 6
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D.5 Method 12

Points ] Test Norm Density Velocity Energy Pressure

1000 N I .325480E-01 .158504E+00 .263872E-01 .420911E-01
1000 N 2 .571715E-01 .172209E+00 .601891E-01 .697691E-01
1000 N o .184923E+00 .821038E+00 .276056E+00 .182059E+00
part N 1 .348307E-01 .159281E+00 .307077E-01 .411532E-01
part N 2 .839684E-01 .172590E+00 .788086E-01 .870456E-01
part N oc .100000E+01 .775753E+00 .876105E+00 .100000E+01

1000 E 1 .222823E-01 .106705E+00 .236942E-01 .342920E-01
1000 E 2 .392454E-01 .113640E+00 .509963E-01 .533369E-01
1000 E 0c .165961E+00 .450716E+00 .251182E+00 .129882E+00
part E I .272534E-01 .110921E+00 .278851E-01 .358040E-01
part E 2 .699270E-01 .118027E+00 .686534E-01 .732711E-01
part E oo .100000E+01 .520853E+00 .876105E+00 .100000E+01

Table D.6 Relative Error Norms for Method 12
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D. 6 Method 20

I Points Test I Norm Density Velocity Energy Pressure JJ
1000 N I .270497E-01 .124528E+00 .310869E-01 .300437E-01
1000 N 2 .465410E-01 .140433E+00 .816390E-01 .597662E-01
1000 N 30 .132384E+00 .480361E+00 .494463E+00 .299863E+00
part N I .276355E-01 .110387E+00 .418932E-01 .219570E-01
part N 2 .748261E-01 .122587E+00 .102776E+00 .760881E-01
part N 30 .100000E+01 .409887E+00 .876105E+00 .100000E+01
1000 E 1 .101494E-01 .572613E-01 .167811E-01 .117158E-01
1000 E 2 .198756E-01 .998780E-01 .500583E-01 .233546E-01
1000 E 00 .119849E+00 .847343E+00 .296220E+00 .186041E+00
part E 1 .151330E-01 .548147E-01 .288455E-01 .152906E-01
part E 2 .578502E-01 .956049E-01 .752466E-01 .586174E-01
part E so .100000E+01 .807053E+00 .876105E+00 .IOOOOOE+01

Table D.7 Relative Error Norms for Method 20
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Appendix E. SOFTWARE

This appendix briefly describes the software that was use in this dissertation.

It is divided into three categories: Kernels, SPH, and Plotting.

Kernels. The computational work in the Kernel Chapter (Chapter VI) and

corresponding appendix is performed mostly using the Mathematica package. It is

used to normalize the kernels, plot the measures of merit, and obtain the norms.

Samples of the code are given in Figures E.1 - E.2. The work on the test problems

(called test 3) is done using a Fortran program. That program is not presented here.

SPH. The primary SPH code used was originally developed at the Phillips

Laboratory by Captain David Amdahl and is known as DOG. It is based on his

own work and that found in the Phillips Laboratory's MAGI SPH code. MAGI has

one, two, and three dimensional capabilities and many 'bells and whistles' while the

Amdahl DOG code is only one dimensional with a simpler implementation. Both

codes are written in Fortran and can run on almost any workstation. Extensive

modifications were made to almost all parts of the DOG code (except the neighbor

search and list algorithms) for this dissertation. These changes make the code more

useful in the research, change the time scheme, make the entire code double precision,

and correct problems with the code. Of course, additional modifications were made

when testing the different hybrid schemes and stabilizing techniques. To list the

code here would take up about 50 pages and not be overly useful to the reader; so

it was not done.

In addition to the main Fortran code, a C based graphics post-processor was

used that was also originally developed by Capt Amdahl. Some modifications were

made including additional options, but all the changes were minor. It is designed

as an X-Windows viewing package, but has Postscript output capabilities. Is uses a

commercially available graphics package known as UNIRAS. Using graphics primi-

tives from a package makes coding graphics easy, but unfortunately this makes the
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myabs~x- : If~x<0,-x,x];

(* Gaussian Kernel *)

dkl [u- :=Evaluate[ED Ck [u] ,u];I

(* W-4 B Spline Kernel *)

k2Eu-]:J 2/3*IfEAbs~uV<=1,1-3/2*u-2+3/4*myabs~u:V3,
If EAbs[u]<-2,1/4*(2-myabs[u])-3,0]];

dk2 Eu...)EvaluateED Ek2 Eu),u]];

(* COS Kernel *)

k3Eu-]: IfEAbs~u]<=2,1/(8/3+8/(Pi'-2))*(1-u^2/4)*(l+CosEPi*u/2]), 0);
dk3[u-j :=Evaluate ED k3Eu] ,u]);

(* Mixed Plots *)

plma=Plot[{kl~v] ,k2Ev] ,k3Ev]},{v,-2.0,2.0},PlotRange->All,
PlotStyle->{{ThicknessE.004] ,DashingE{0.05,0.05}]},
{Thickness[.002) ,DashingE{0.03,0.03}]},
{Thickness E.00i] ,Dashing[{0 .01,0. 01}] }},AxesLabel->{"u" ,"K(u) "}J;

plma2=Show~plma,GraphicsETextE"I(1)",{1.9, .04}) ,TextE"(2)",{.4, .62}],
Text [" (3)"',{.18, .59}i))

plmb=Plot Efdkl Evi,dk2EvJ ,dk3Ev)},{v,-2.0,2.0},PlotRange->All,
PlotStyle->{{ThicknessE.004] ,DashingE{0.05,0.05}]},
{ThicknessE.002] ,DashingE{0.03,0.03})},
{Thickness E.001] ,Dashing E{0.01,0. 01}] }},AxesLabel->{"iu"t, K' (u) "});

plmb2=Shov~plmb,GraphicsETextE(1I~)" ,{1.85,-. 15}J,
TextE["(2)",f{1. 1,-.61),Text E"(3)I,{1.55,-.32}]1);

plk2a=PlotE{1,-2*dxh*Sum~l*dxh*dk2[l*dxh] ,{l,1,20})},{dxh, 1/10,2},
PlotRang.e->All,PlotStyle->{{Thickness[.004] ,DashingE{0.05,0.05}J},
{Thickcne~ssE.001) ,DashingE{0 .01,0.011)11 ,AxesLabel->{'dx/h" ,"S
PlotLabel-'>"B Spline Kernel");

Figure E.1 Mathemnatica Code for Kernels Chapter, part 1
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(* Error Norms *)

llk2=N[Sum[Abs[-2*(.2+n/i00)*Sum[1*(.2+n/100)*dk2[1*(.2+n/100)],
{1,1,200/(20+n)}]-1],{n,1,100}1/100];

12k2=SqrtEN[Sum[(-2*(.2+n/100)*Sum[l*(.2+n100)*dk2[1*(.2+n/100)],
{1,1,200/(20+n) }]-1)2,n,{1,100}]/100] ;

Figure E.2 Mathematica Code for Kernels Chapter, part 2

post-processor not easily portable. In fact, I must still use the product through the

internet using the Phillips Laboratory's IBM Risc 6000 workstations. Developing a

post-processor that uses X-Windows commands directly should be accomplished. In

addition, a graphics capability intertwined with the computational capability would

be very useful.

Plotting. In addition to the computational work in the Kernels Chapter and

the SPH plots, I used the XFIG package, Mathematica, MathCAD, Excel, Drawing

Gallery, and GNUPIot to produce the remaining plots in this work. This was all

fairly minor work and no code is included.

Availability. The software discussed above is all available from the author.
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This dissertation studies the numerical method of Smoothed Particle Hydrodynamics (SPH) as a technique for
solving systems of conservation equations. The research starts with a detailed consistency analysis of the method.
Higher dimensions and non-smooth functions are considered in addition to the smooth one dimensional case. A
stability analysis is then performed. Using a linear technique, an instability is found. Solutions are proposed
to resolve the instability. Also a total variation stability analysis is performed leading to a monotone form of
SPH. The concepts of consistency and stability are then used in a convergence proof. This proof uses lemmas
derived from the Lax-Wendroff theorem in finite differences. The numerical analysis of the method is concluded
with a study of the SPH kernel function. Measures of merit are derived for SPH kernels and these are used to
show bell-shaped kernels to be superior over other shaped kernels. Three second-order time schemes are applied
to SPH to provide a full discretization of the problem; these are Lax-Wendroff, central, and Shu schemes. In
addition a lower-order SPH Lax-Friedrichs type form is developed. This method is used in proposing the use of
flux-limited hybrid methods in SPH to resolve shocks.
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